Suppr超能文献

一种使用颅骨自动 3D 标志点进行颅面分析的新方法。

A novel approach to craniofacial analysis using automated 3D landmarking of the skull.

机构信息

Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA.

Department of Human Genetics, KU Leuven, Leuven, Belgium.

出版信息

Sci Rep. 2024 May 29;14(1):12381. doi: 10.1038/s41598-024-63137-1.

Abstract

Automatic dense 3D surface registration is a powerful technique for comprehensive 3D shape analysis that has found a successful application in human craniofacial morphology research, particularly within the mandibular and cranial vault regions. However, a notable gap exists when exploring the frontal aspect of the human skull, largely due to the intricate and unique nature of its cranial anatomy. To better examine this region, this study introduces a simplified single-surface craniofacial bone mask comprising of 6707 quasi-landmarks, which can aid in the classification and quantification of variation over human facial bone surfaces. Automatic craniofacial bone phenotyping was conducted on a dataset of 31 skull scans obtained through cone-beam computed tomography (CBCT) imaging. The MeshMonk framework facilitated the non-rigid alignment of the constructed craniofacial bone mask with each individual target mesh. To gauge the accuracy and reliability of this automated process, 20 anatomical facial landmarks were manually placed three times by three independent observers on the same set of images. Intra- and inter-observer error assessments were performed using root mean square (RMS) distances, revealing consistently low scores. Subsequently, the corresponding automatic landmarks were computed and juxtaposed with the manually placed landmarks. The average Euclidean distance between these two landmark sets was 1.5 mm, while centroid sizes exhibited noteworthy similarity. Intraclass coefficients (ICC) demonstrated a high level of concordance (> 0.988), with automatic landmarking showing significantly lower errors and variation. These results underscore the utility of this newly developed single-surface craniofacial bone mask, in conjunction with the MeshMonk framework, as a highly accurate and reliable method for automated phenotyping of the facial region of human skulls from CBCT and CT imagery. This craniofacial template bone mask expansion of the MeshMonk toolbox not only enhances our capacity to study craniofacial bone variation but also holds significant potential for shedding light on the genetic, developmental, and evolutionary underpinnings of the overall human craniofacial structure.

摘要

自动密集三维表面配准是一种强大的全面三维形状分析技术,在人类颅面形态研究中得到了成功的应用,特别是在下颌骨和颅穹窿区域。然而,在探索人类颅骨的正面时,存在一个明显的差距,主要是由于其颅部解剖结构的复杂性和独特性。为了更好地研究该区域,本研究引入了一个简化的单一表面颅面骨掩模,包含 6707 个准地标,这有助于对面部骨骼表面的变异进行分类和量化。通过锥形束计算机断层扫描(CBCT)成像获得的 31 个颅骨扫描数据集,进行自动颅面骨表型分析。MeshMonk 框架促进了构建的颅面骨掩模与每个目标网格的非刚性对齐。为了评估这个自动过程的准确性和可靠性,20 个解剖面部地标由三名独立观察者在同一组图像上手动放置三次。使用均方根(RMS)距离进行了内部和观察者之间的误差评估,结果显示得分始终较低。然后,计算了相应的自动地标,并与手动放置的地标进行了对比。这两个地标集之间的平均欧几里得距离为 1.5 毫米,而质心大小表现出显著的相似性。组内系数(ICC)显示出高度的一致性(>0.988),自动地标具有明显更低的误差和变化。这些结果突出了新开发的单一表面颅面骨掩模与 MeshMonk 框架相结合的实用性,这是一种从 CBCT 和 CT 图像中自动对人类颅骨面部区域进行表型分析的高度准确和可靠的方法。MeshMonk 工具包的颅面模板骨掩模扩展不仅增强了我们研究颅面骨变异的能力,而且还为揭示整体人类颅面结构的遗传、发育和进化基础提供了重要潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验