Suppr超能文献

利用机器学习构建肝细胞癌进展的诊断模型

Construction of diagnostic models for the progression of hepatocellular carcinoma using machine learning.

作者信息

Jiang Xin, Zhou Ruilong, Jiang Fengle, Yan Yanan, Zhang Zheting, Wang Jianmin

机构信息

Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China.

出版信息

Front Oncol. 2024 May 15;14:1401496. doi: 10.3389/fonc.2024.1401496. eCollection 2024.

Abstract

Liver cancer is one of the most prevalent forms of cancer worldwide. A significant proportion of patients with hepatocellular carcinoma (HCC) are diagnosed at advanced stages, leading to unfavorable treatment outcomes. Generally, the development of HCC occurs in distinct stages. However, the diagnostic and intervention markers for each stage remain unclear. Therefore, there is an urgent need to explore precise grading methods for HCC. Machine learning has emerged as an effective technique for studying precise tumor diagnosis. In this research, we employed random forest and LightGBM machine learning algorithms for the first time to construct diagnostic models for HCC at various stages of progression. We categorized 118 samples from GSE114564 into three groups: normal liver, precancerous lesion (including chronic hepatitis, liver cirrhosis, dysplastic nodule), and HCC (including early stage HCC and advanced HCC). The LightGBM model exhibited outstanding performance (accuracy = 0.96, precision = 0.96, recall = 0.96, F1-score = 0.95). Similarly, the random forest model also demonstrated good performance (accuracy = 0.83, precision = 0.83, recall = 0.83, F1-score = 0.83). When the progression of HCC was categorized into the most refined six stages: normal liver, chronic hepatitis, liver cirrhosis, dysplastic nodule, early stage HCC, and advanced HCC, the diagnostic model still exhibited high efficacy. Among them, the LightGBM model exhibited good performance (accuracy = 0.71, precision = 0.71, recall = 0.71, F1-score = 0.72). Also, performance of the LightGBM model was superior to that of the random forest model. Overall, we have constructed a diagnostic model for the progression of HCC and identified potential diagnostic characteristic gene for the progression of HCC.

摘要

肝癌是全球最常见的癌症形式之一。相当一部分肝细胞癌(HCC)患者在晚期才被诊断出来,导致治疗效果不佳。一般来说,HCC的发展分为不同阶段。然而,每个阶段的诊断和干预标志物仍不明确。因此,迫切需要探索HCC的精确分级方法。机器学习已成为研究精确肿瘤诊断的有效技术。在本研究中,我们首次采用随机森林和LightGBM机器学习算法构建HCC不同进展阶段的诊断模型。我们将来自GSE114564的118个样本分为三组:正常肝脏、癌前病变(包括慢性肝炎、肝硬化、发育异常结节)和HCC(包括早期HCC和晚期HCC)。LightGBM模型表现出出色的性能(准确率=0.96,精确率=0.96,召回率=0.96,F1分数=0.95)。同样,随机森林模型也表现出良好的性能(准确率=0.83,精确率=0.83,召回率=0.83,F1分数=0.83)。当将HCC的进展分为最精细的六个阶段:正常肝脏、慢性肝炎、肝硬化、发育异常结节、早期HCC和晚期HCC时,诊断模型仍表现出高效性。其中,LightGBM模型表现出良好的性能(准确率=0.71,精确率=0.71,召回率=0.71,F1分数=0.72)。而且,LightGBM模型的性能优于随机森林模型。总体而言,我们构建了一个HCC进展的诊断模型,并确定了HCC进展的潜在诊断特征基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e8d/11133637/bc336ee75ee6/fonc-14-1401496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验