Aminnezhad Sargol, Hassan Aubais Aljelehawy Qassim, Rezaei Mohammad, Mohammadi Mohammad Reza, Zonobian Mohammad Ali, Nazari Masomeh, Fathi Fardin, Dadpour Saba, Habibi Paria, Kashanian Soheila, Ashengroph Morahem, Mohammadzade Hadi, Azarakhsh Yousef, Kahrizi Sepehr, Alavi Mehran, Xu Zhenchao
Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
Department of Chemistry, College of Education, University of Alqadisiya, Iraq .
Cell Mol Biol (Noisy-le-grand). 2024 May 27;70(5):100-110. doi: 10.14715/cmb/2024.70.5.14.
Molecularly imprinted polymers (MIPs) are pivotal in medicine, mimicking biological receptors with enhanced specificity and affinity. Comprising templates, functional monomers, and cross-linkers, MIPs form stable three-dimensional polymer networks. Synthetic templates like glycan and aptamers improve efficiency, guiding the molecular imprinting process. Cross-linking determines MIPs' morphology and mechanical stability, with printable hydrogels offering biocompatibility and customizable properties, mimicking native extracellular matrix (ECM) microenvironments. Their versatility finds applications in tissue engineering, soft robotics, regenerative medicine, and wastewater treatment. In cancer research, MIPs excel in both detection and therapy. MIP-based detection systems exhibit superior sensitivity and selectivity for cancer biomarkers. They target nucleic acids, proteins, and exosomes, providing stability, sensitivity, and adaptability. In therapy, MIPs offer solutions to challenges like multidrug resistance, excelling in drug delivery, photodynamic therapy, photothermal therapy, and biological activity regulation. In microbiology, MIPs serve as adsorbents in solid-phase extraction (SPE), efficiently separating and enriching antibiotics during sample preparation. They contribute to bacterial identification, selectively capturing specific strains or species. MIPs aid in detecting antibiotic residues using fluorescent nanostructures and developing sensors for sulfadiazine detection in food samples. In summary, MIPs play a pivotal role in advancing medical technologies with enhanced sensitivity, selectivity, and versatility. Applications range from biomarker detection to innovative cancer therapies, making MIPs indispensable for the accurate determination and monitoring of diverse biological and environmental samples.
分子印迹聚合物(MIPs)在医学领域至关重要,它能够模拟生物受体,具有更高的特异性和亲和力。MIPs由模板、功能单体和交联剂组成,形成稳定的三维聚合物网络。聚糖和适体等合成模板提高了效率,引导分子印迹过程。交联决定了MIPs的形态和机械稳定性,可打印水凝胶具有生物相容性和可定制特性,能够模拟天然细胞外基质(ECM)微环境。其多功能性在组织工程、软体机器人技术、再生医学和废水处理等领域都有应用。在癌症研究中,MIPs在检测和治疗方面都表现出色。基于MIPs的检测系统对癌症生物标志物具有卓越的灵敏度和选择性。它们靶向核酸、蛋白质和外泌体,具备稳定性、灵敏度和适应性。在治疗方面,MIPs为多药耐药等挑战提供了解决方案,在药物递送、光动力疗法、光热疗法和生物活性调节方面表现出色。在微生物学中,MIPs作为固相萃取(SPE)中的吸附剂,在样品制备过程中能有效分离和富集抗生素。它们有助于细菌鉴定,选择性地捕获特定菌株或物种。MIPs借助荧光纳米结构辅助检测抗生素残留,并开发用于食品样品中磺胺嘧啶检测的传感器。总之,MIPs在提高灵敏度、选择性和多功能性方面对推动医学技术发展起着关键作用。其应用范围从生物标志物检测到创新的癌症治疗,使MIPs对于准确测定和监测各种生物和环境样品不可或缺。