Quantitative & Systems Biology, University of California, Merced, Merced, California, United States of America.
Department of Biology, San Francisco State University, San Francisco, California, United States of America.
PLoS One. 2024 May 30;19(5):e0300190. doi: 10.1371/journal.pone.0300190. eCollection 2024.
Histone variants are paralogs that replace canonical histones in nucleosomes, often imparting novel functions. However, how histone variants arise and evolve is poorly understood. Reconstruction of histone protein evolution is challenging due to large differences in evolutionary rates across gene lineages and sites. Here we used intron position data from 108 nematode genomes in combination with amino acid sequence data to find disparate evolutionary histories of the three H2A variants found in Caenorhabditis elegans: the ancient H2A.ZHTZ-1, the sperm-specific HTAS-1, and HIS-35, which differs from the canonical S-phase H2A by a single glycine-to-alanine C-terminal change. Although the H2A.ZHTZ-1 protein sequence is highly conserved, its gene exhibits recurrent intron gain and loss. This pattern suggests that specific intron sequences or positions may not be important to H2A.Z functionality. For HTAS-1 and HIS-35, we find variant-specific intron positions that are conserved across species. Patterns of intron position conservation indicate that the sperm-specific variant HTAS-1 arose more recently in the ancestor of a subset of Caenorhabditis species, while HIS-35 arose in the ancestor of Caenorhabditis and its sister group, including the genus Diploscapter. HIS-35 exhibits gene retention in some descendent lineages but gene loss in others, suggesting that histone variant use or functionality can be highly flexible. Surprisingly, we find the single amino acid differentiating HIS-35 from core H2A is ancestral and common across canonical Caenorhabditis H2A sequences. Thus, we speculate that the role of HIS-35 lies not in encoding a functionally distinct protein, but instead in enabling H2A expression across the cell cycle or in distinct tissues. This work illustrates how genes encoding such partially-redundant functions may be advantageous yet relatively replaceable over evolutionary timescales, consistent with the patchwork pattern of retention and loss of both genes. Our study shows the utility of intron positions for reconstructing evolutionary histories of gene families, particularly those undergoing idiosyncratic sequence evolution.
组蛋白变体是替代核小体中典型组蛋白的旁系同源物,通常赋予新的功能。然而,组蛋白变体是如何产生和进化的还知之甚少。由于基因谱系和位点之间的进化速率存在很大差异,因此重建组蛋白蛋白进化是具有挑战性的。在这里,我们使用来自 108 个线虫基因组的内含子位置数据结合氨基酸序列数据,发现秀丽隐杆线虫中发现的三种 H2A 变体具有不同的进化历史:古老的 H2A.ZHTZ-1、精子特异性的 HTAS-1 和 HIS-35,其与典型的 S 期 H2A 仅在 C 末端发生一个甘氨酸到丙氨酸的变化。虽然 H2A.ZHTZ-1 蛋白序列高度保守,但它的基因表现出反复的内含子获得和丢失。这种模式表明,特定的内含子序列或位置可能对 H2A.Z 的功能不重要。对于 HTAS-1 和 HIS-35,我们发现了在物种间保守的变体特异性内含子位置。内含子位置保守模式表明,精子特异性变体 HTAS-1 是在某些线虫物种的祖先中最近出现的,而 HIS-35 是在线虫及其姐妹群(包括 Diploscapter 属)的祖先中出现的。HIS-35 在一些后裔谱系中保留了基因,但在其他谱系中丢失了基因,这表明组蛋白变体的使用或功能可能非常灵活。令人惊讶的是,我们发现将 HIS-35 与核心 H2A 区分开来的单个氨基酸是祖先的,并且在典型的 Caenorhabditis H2A 序列中是常见的。因此,我们推测 HIS-35 的作用不在于编码具有独特功能的蛋白质,而是在于在整个细胞周期或在不同组织中表达 H2A。这项工作说明了如何对编码这种部分冗余功能的基因进行有利但相对可替代的进化,这与基因保留和丢失的拼凑模式一致。我们的研究表明,内含子位置对于重建基因家族的进化历史,特别是那些经历独特序列进化的基因家族,具有实用性。