Li Yan, Li Chunping, Zhu Tingting, Zhang Shurong, Liu Li, Guan Zhanpeng
Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, China.
Front Plant Sci. 2025 Apr 9;16:1545216. doi: 10.3389/fpls.2025.1545216. eCollection 2025.
With the continuous advancement of modern agricultural technologies, the demand for precision fruit-picking techniques has been increasing. This study addresses the challenge of accurate recognition and harvesting of winter peaches by proposing a novel recognition model based on the residual network (ResNet) architecture-WinterPeachNet-aimed at enhancing the accuracy and efficiency of winter peach detection, even in resource-constrained environments. The WinterPeachNet model achieves a comprehensive improvement in network performance by integrating depthwise separable inverted bottleneck ResNet (DIBResNet), bidirectional feature pyramid network (BiFPN) structure, GhostConv module, and the YOLOv11 detection head (v11detect). The DIBResNet module, based on the ResNet architecture, introduces an inverted bottleneck structure and depthwise separable convolution technology, enhancing the depth and quality of feature extraction while effectively reducing the model's computational complexity. The GhostConv module further improves detection accuracy by reducing the number of convolution kernels. Additionally, the BiFPN structure strengthens the model's ability to detect objects of different sizes by fusing multi-scale feature information. The introduction of v11detect further optimizes object localization accuracy. The results show that the WinterPeachNet model achieves excellent performance in the winter peach detection task, with P = 0.996, R = 0.996, mAP50 = 0.995, and mAP50-95 = 0.964, demonstrating the model's efficiency and accuracy in the winter peach detection task. The high efficiency of the WinterPeachNet model makes it highly adaptable in resource-constrained environments, enabling effective object detection at a relatively low computational cost.
随着现代农业技术的不断进步,对精确水果采摘技术的需求日益增加。本研究通过提出一种基于残差网络(ResNet)架构的新型识别模型——WinterPeachNet,来应对冬桃精确识别和采摘的挑战,旨在提高冬桃检测的准确性和效率,即使在资源受限的环境中也是如此。WinterPeachNet模型通过集成深度可分离倒置瓶颈ResNet(DIBResNet)、双向特征金字塔网络(BiFPN)结构、GhostConv模块和YOLOv11检测头(v11detect),实现了网络性能的全面提升。基于ResNet架构的DIBResNet模块引入了倒置瓶颈结构和深度可分离卷积技术,在有效降低模型计算复杂度的同时,增强了特征提取的深度和质量。GhostConv模块通过减少卷积核数量进一步提高了检测精度。此外,BiFPN结构通过融合多尺度特征信息,增强了模型检测不同大小物体的能力。v11detect的引入进一步优化了目标定位精度。结果表明,WinterPeachNet模型在冬桃检测任务中表现出色,P = 0.996,R = 0.996,mAP50 = 0.995,mAP50 - 95 = 0.964,证明了该模型在冬桃检测任务中的效率和准确性。WinterPeachNet模型的高效性使其在资源受限环境中具有高度适应性,能够以相对较低的计算成本实现有效的目标检测。