Laboratory of Data Science and Genomics, IMBECU CONICET UNCuyo, 5500, Mendoza, Argentina.
Medicine School, National University of Cuyo, 5500, Mendoza, Argentina.
Sci Rep. 2024 May 30;14(1):12471. doi: 10.1038/s41598-024-61807-8.
Breast cancer (BRCA) is a prevalent malignancy with the highest incidence among females. BRCA can be categorized into five intrinsic molecular subtypes (LumA, LumB, HER2, Basal, and Normal), each characterized by varying molecular and clinical features determined by the expression of intrinsic genes (PAM50). The Heat Shock Protein (HSP) family is composed of 95 genes evolutionary conservated, they have critical roles in proteostasis in both normal and cancerous processes. Many studies have linked HSP to the development and spread of cancer. They modulate the activity of multiple proteins expressed by oncogenes and anti-oncogenes through a range of interactions. In this study, we evaluate the mutational changes that HSP undergoes in BRCA mainly from the TCGA database. We observe that Copy Number Variations (CNV) are the more frequent events analyzed surpassing the occurrence of point mutations, indels, and translation start site mutations. The Basal subtype showcased the highest count of amplified CNV, including subtype-specific changes, whereas the Luminals tumors accumulated the greatest number of deletion CNV. Meanwhile, the HER2 subtype exhibited a comparatively lower frequency of CNV alterations when compared to the other subtypes. This study integrates CNV and expression data, finding associations between these two variables and the influence of CNV on the deregulation of HSP expression. To enhance the role of HSP as a risk predictor in BRCA, we succeeded in identifying CNV profiles as a prognostic marker. We included Artificial Intelligence to improve the clustering of patients, and we achieved a molecular CNV signature as a significant risk factor independent of known classic markers, including molecular subtypes PAM50. This research enhances the comprehension of HSP DNA alterations in BRCA and its relation with predicting the risk of affected individuals providing insights to develop guide personalized treatment strategies.
乳腺癌(BRCA)是一种常见的恶性肿瘤,女性发病率最高。BRCA 可分为五个内在分子亚型(LumA、LumB、HER2、基底和正常),每个亚型的特点是内在基因(PAM50)表达的不同分子和临床特征。热休克蛋白(HSP)家族由 95 个基因组成,进化上保守,在正常和癌变过程中的蛋白质稳定中起着关键作用。许多研究将 HSP 与癌症的发展和扩散联系起来。它们通过一系列相互作用调节癌基因和抑癌基因表达的多种蛋白质的活性。在这项研究中,我们主要从 TCGA 数据库评估 HSP 在 BRCA 中发生的突变变化。我们观察到,拷贝数变异(CNV)是分析中更频繁发生的事件,超过了点突变、插入缺失和翻译起始位点突变的发生。基底亚型展示了最高数量的扩增 CNV,包括亚型特异性变化,而 Luminal 肿瘤积累了最多数量的缺失 CNV。与此同时,与其他亚型相比,HER2 亚型表现出相对较低的 CNV 改变频率。这项研究整合了 CNV 和表达数据,发现了这两个变量之间的关联,以及 CNV 对 HSP 表达失调的影响。为了增强 HSP 作为 BRCA 风险预测因子的作用,我们成功地确定了 CNV 谱作为一种预后标志物。我们纳入了人工智能来改善患者的聚类,我们确定了一个分子 CNV 特征作为一个独立于已知经典标志物(包括分子亚型 PAM50)的显著风险因素。这项研究增强了对 BRCA 中 HSP DNA 改变及其与预测受影响个体风险的关系的理解,为开发指导个性化治疗策略提供了依据。
Sci Rep. 2024-5-30
Cancer Epidemiol Biomarkers Prev. 2014-5
BMC Med Genomics. 2021-1-28
BMC Bioinformatics. 2018-2-19
J Natl Cancer Inst. 2014-8-19
Methods Mol Biol. 2022
Nucleic Acids Res. 2023-1-6
Genome Res. 2018-10-19
BMC Bioinformatics. 2017-1-14