Suppr超能文献

基于视频的手术导航中的无接触式 3D 配准的结构光。

Structured light for touchless 3D registration in video-based surgical navigation.

机构信息

Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal.

Perceive3D, Coimbra, Portugal.

出版信息

Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1429-1437. doi: 10.1007/s11548-024-03180-5. Epub 2024 May 30.

Abstract

PURPOSE

Arthroscopic surgery, with its inherent difficulties on visibility and maneuverability inside the joint, poses significant challenges to surgeons. Video-based surgical navigation (VBSN) has proven to have clinical benefits in arthroscopy but relies on a time-consuming and challenging surface digitization using a touch probe to accomplish registration of intraoperative data with preoperative anatomical models. This paper presents an off-the-shelf laser scanner for noninvasive registration that enables an increased area of reachable region.

METHODS

Our solution uses a standard arthroscope and a light projector with visual markers for real-time extrinsic calibration. Nevertheless, the shift from a touch probe to a laser scanner introduces a new challenge-the presence of a significant amount of outliers resulting from the reconstruction of nonrigid structures. To address this issue, we propose to identify the structures of interest prior to reconstruction using a deep learning-based semantic segmentation technique.

RESULTS

Experimental validation using knee and hip phantoms, as well as ex-vivo data, assesses the laser scanner's effectiveness. The integration of the segmentation model improves results in ex-vivo experiments by mitigating outliers. Specifically, the laser scanner with the segmentation model achieves registration errors below 2.2 mm, with the intercondylar region exhibiting errors below 1 mm. In experiments with phantoms, the errors are always below 1 mm.

CONCLUSION

The results show the viability of integrating the laser scanner with VBSN as a noninvasive and potential alternative to traditional methods by overcoming surface digitization challenges and expanding the reachable region. Future efforts aim to improve hardware to further optimize performance and applicability in complex procedures.

摘要

目的

关节镜手术在关节内的可视性和可操作性方面存在固有困难,给外科医生带来了巨大挑战。基于视频的手术导航(VBSN)已被证明在关节镜手术中有临床益处,但依赖于使用触笔进行耗时且具有挑战性的表面数字化,以完成术中数据与术前解剖模型的配准。本文提出了一种用于非侵入式注册的现成激光扫描仪,可增加可触及区域的面积。

方法

我们的解决方案使用标准关节镜和带有视觉标记的光投影仪进行实时外部校准。然而,从触笔到激光扫描仪的转变带来了一个新的挑战——由于非刚性结构的重建,会出现大量异常值。为了解决这个问题,我们建议在重建之前使用基于深度学习的语义分割技术来识别感兴趣的结构。

结果

使用膝关节和髋关节模型以及离体数据进行的实验验证评估了激光扫描仪的有效性。分割模型的集成通过减少异常值提高了离体实验的结果。具体来说,带有分割模型的激光扫描仪的注册误差低于 2.2 毫米,髁间区域的误差低于 1 毫米。在模型实验中,误差始终低于 1 毫米。

结论

结果表明,通过克服表面数字化挑战并扩大可触及区域,将激光扫描仪与 VBSN 集成作为传统方法的非侵入性和潜在替代方法具有可行性。未来的努力旨在改进硬件,以进一步优化在复杂手术中的性能和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/11230986/c86cf107bf9a/11548_2024_3180_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验