Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, USA.
Stat Med. 2024 Jul 30;43(17):3227-3238. doi: 10.1002/sim.10124. Epub 2024 May 30.
The prevalence of e-cigarette use among young adults in the USA is high (14%). Although the majority of users plan to quit vaping, the motivation to make a quit attempt is low and available support during a quit attempt is limited. Using wearable sensors to collect physiological data (eg, heart rate) holds promise for capturing the right timing to deliver intervention messages. This study aims to fill the current knowledge gap by proposing statistical methods to (1) de-noise beat-to-beat interval (BBI) data from smartwatches worn by 12 young adult regular e-cigarette users for 7 days; and (2) summarize the de-noised data by event and control segments. We also conducted a comprehensive review of conventional methods for summarizing heart rate variability (HRV) and compared their performance with the proposed method. The results show that the proposed singular spectrum analysis (SSA) can effectively de-noise the highly variable BBI data, as well as quantify the proportion of total variation extracted. Compared to existing HRV methods, the proposed second order polynomial model yields the highest area under the curve (AUC) value of 0.76 and offers better interpretability. The findings also indicate that the average heart rate before vaping is higher and there is an increasing trend in the heart rate before the vaping event. Importantly, the development of increasing heart rate observed in this study implies that there may be time to intervene as this physiological signal emerges. This finding, if replicated in a larger scale study, may inform optimal timings for delivering messages in future intervention.
美国年轻人中电子烟的使用较为普遍(14%)。尽管大多数使用者计划停止使用电子烟,但他们戒烟的动机较低,戒烟尝试期间可获得的支持也有限。使用可穿戴传感器来收集生理数据(如心率)有望捕捉到发送干预信息的最佳时机。本研究旨在通过提出统计方法来填补这一知识空白,该方法旨在:(1) 对 12 名经常使用电子烟的年轻成年使用者佩戴智能手表 7 天记录的心率变异性数据进行去噪处理;(2) 通过事件和对照段对去噪后的数据进行总结。我们还对传统的心率变异性(HRV)总结方法进行了全面回顾,并将其性能与所提出的方法进行了比较。结果表明,所提出的奇异谱分析(SSA)可以有效地对高度变化的 BBI 数据进行去噪,并量化提取的总变异比例。与现有的 HRV 方法相比,所提出的二阶多项式模型的曲线下面积(AUC)值最高为 0.76,具有更好的可解释性。研究结果还表明,在开始吸烟前,平均心率较高,且在吸烟事件前,心率有上升趋势。重要的是,在本研究中观察到的心率增加趋势表明,随着这种生理信号的出现,可能有时间进行干预。如果在更大规模的研究中得到证实,这一发现可能为未来干预措施中发送信息的最佳时机提供信息。