Suppr超能文献

利用新型移动传感器评估压力和吸烟中断。

Using novel mobile sensors to assess stress and smoking lapse.

机构信息

Department of Family Medicine & Biobehavioral Health, University of Minnesota Medical School, Duluth, United States of America.

Division of Biostatistics, School of Public Health, University of Minnesota, United States of America.

出版信息

Int J Psychophysiol. 2020 Dec;158:411-418. doi: 10.1016/j.ijpsycho.2020.11.005. Epub 2020 Nov 13.

Abstract

Mobile sensors can now provide unobtrusive measurement of both stress and cigarette smoking behavior. We describe, here, the first field tests of two such methods, cStress and puffMarker, that were used to examine relationships between stress and smoking behavior and lapse from a sample of 76 smokers motivated to quit smoking. Participants wore a mobile sensors suite, called AutoSense, which collected continuous physiological data for 4 days (24-hours pre-quit and 72-hours post-quit) in the field. Algorithms were applied to the physiological data to create indices of stress (cStress) and first lapse smoking episodes (puffMarker). We used mixed effects interrupted autoregressive time series models to assess changes in heart rate (HR), cStress, and nicotine craving across the 4-day period. Self-report assessments using ecological momentary assessment (EMA) of mood, withdrawal symptoms, and smoking behavior were also used. Results indicated that HR and cStress, respectively, predicted smoking lapse. These results suggest that measures of traditional psychophysiology, such as HR, are not redundant with cStress; both provide important information. Results are consistent with existing literature and provide clear support for cStress and puffMarker in ambulatory clinical research. This research lays groundwork for sensor-based markers in developing and delivering sensor-triggered, just-in-time interventions that are sensitive to stress-related lapser risk factors.

摘要

现在,移动传感器可以对压力和吸烟行为进行非侵入式测量。我们在此介绍了两种此类方法(cStress 和 puffMarker)的首次现场测试,它们被用于研究压力和吸烟行为之间的关系以及 76 名有戒烟动机的吸烟者的复吸情况。参与者佩戴了一个名为 AutoSense 的移动传感器套件,该套件在现场连续采集了 4 天(戒烟前 24 小时和戒烟后 72 小时)的生理数据。算法被应用于生理数据,以创建压力指数(cStress)和首次吸烟发作指数(puffMarker)。我们使用混合效应中断自回归时间序列模型来评估 4 天内心率(HR)、cStress 和尼古丁渴求的变化。使用生态瞬时评估(EMA)对情绪、戒断症状和吸烟行为进行的自我报告评估也被用于研究。结果表明,HR 和 cStress 分别预测了吸烟发作。这些结果表明,传统生理测量,如 HR,与 cStress 并不冗余;两者都提供了重要信息。结果与现有文献一致,并为 cStress 和 puffMarker 在动态临床研究中提供了明确的支持。这项研究为基于传感器的生物标志物奠定了基础,以开发和提供对与压力相关的复吸风险因素敏感的基于传感器的、及时的干预措施。

相似文献

1
Using novel mobile sensors to assess stress and smoking lapse.
Int J Psychophysiol. 2020 Dec;158:411-418. doi: 10.1016/j.ijpsycho.2020.11.005. Epub 2020 Nov 13.
4
Socioeconomic status, mindfulness, and momentary associations between stress and smoking lapse during a quit attempt.
Drug Alcohol Depend. 2020 Apr 1;209:107840. doi: 10.1016/j.drugalcdep.2020.107840. Epub 2020 Jan 30.
5
Predicting the first smoking lapse during a quit attempt: A machine learning approach.
Drug Alcohol Depend. 2021 Jan 1;218:108340. doi: 10.1016/j.drugalcdep.2020.108340. Epub 2020 Oct 11.
7
A Randomized Clinical Trial of Nicotine Preloading for Smoking Cessation in People with Posttraumatic Stress Disorder.
J Dual Diagn. 2018 Jul-Sep;14(3):148-157. doi: 10.1080/15504263.2018.1468947. Epub 2018 Oct 10.
10
An ecological momentary assessment study of outcome expectancies and smoking lapse in daily life.
Drug Alcohol Depend. 2022 Sep 1;238:109587. doi: 10.1016/j.drugalcdep.2022.109587. Epub 2022 Jul 27.

引用本文的文献

2
Applied statistical methods for identifying features of heart rate that are associated with nicotine vaping.
Am J Drug Alcohol Abuse. 2025 Mar 4;51(2):165-172. doi: 10.1080/00952990.2024.2441868. Epub 2025 Feb 10.
3
Correlates of nicotine patch adherence in daily life.
Drug Alcohol Depend. 2025 Jan 1;266:112499. doi: 10.1016/j.drugalcdep.2024.112499. Epub 2024 Nov 17.
4
Sensors for Smoking Detection in Epidemiological Research: Scoping Review.
JMIR Mhealth Uhealth. 2024 Oct 30;12:e52383. doi: 10.2196/52383.
5
Wearable neurofeedback acceptance model for students' stress and anxiety management in academic settings.
PLoS One. 2024 Oct 24;19(10):e0304932. doi: 10.1371/journal.pone.0304932. eCollection 2024.
8
A novel stress-based intervention reduces cigarette use in non-treatment seeking smokers.
Neuropsychopharmacology. 2023 Jan;48(2):308-316. doi: 10.1038/s41386-022-01455-6. Epub 2022 Sep 29.
9
A Just-In-Time Adaptive intervention (JITAI) for smoking cessation: Feasibility and acceptability findings.
Addict Behav. 2023 Jan;136:107467. doi: 10.1016/j.addbeh.2022.107467. Epub 2022 Aug 23.
10
Are Psychophysiological Wearables Suitable for Comparing Pedagogical Teaching Approaches?
Sensors (Basel). 2022 Jul 30;22(15):5704. doi: 10.3390/s22155704.

本文引用的文献

1
SARA: A Mobile App to Engage Users in Health Data Collection.
Proc ACM Int Conf Ubiquitous Comput. 2017 Sep;2017:781-789. doi: 10.1145/3123024.3125611.
2
Finding Significant Stress Episodes in a Discontinuous Time Series of Rapidly Varying Mobile Sensor Data.
Proc SIGCHI Conf Hum Factor Comput Syst. 2016 May;2016:4489-4501. doi: 10.1145/2858036.2858218.
7
Chronic Smoking, Trait Anxiety, and the Physiological Response to Stress.
Subst Use Misuse. 2016 Oct 14;51(12):1619-1628. doi: 10.1080/10826084.2016.1191511. Epub 2016 Aug 2.
8
Effects of State-Level Tobacco Environment on Cigarette Smoking are Stronger Among Those With Individual-Level Risk Factors.
Nicotine Tob Res. 2016 Oct;18(10):2020-2030. doi: 10.1093/ntr/ntw114. Epub 2016 Apr 29.
9
Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse.
Neurosci Biobehav Rev. 2016 Jun;65:173-84. doi: 10.1016/j.neubiorev.2016.04.003. Epub 2016 Apr 8.
10
Mobile phone-based interventions for smoking cessation.
Cochrane Database Syst Rev. 2016 Apr 10;4(4):CD006611. doi: 10.1002/14651858.CD006611.pub4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验