Suppr超能文献

使用深度学习框架进行自动化瓣跟踪二维相位对比的三尖瓣流量测量。

Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast.

机构信息

Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.

Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.

出版信息

Magn Reson Med. 2024 Nov;92(5):1838-1850. doi: 10.1002/mrm.30163. Epub 2024 May 31.

Abstract

PURPOSE

Tricuspid valve flow velocities are challenging to measure with cardiovascular MR, as the rapidly moving valvular plane prohibits direct flow evaluation, but they are vitally important to diastolic function evaluation. We developed an automated valve-tracking 2D method for measuring flow through the dynamic tricuspid valve.

METHODS

Nine healthy subjects and 2 patients were imaged. The approach uses a previously trained deep learning network, TVnet, to automatically track the tricuspid valve plane from long-axis cine images. Subsequently, the tracking information is used to acquire 2D phase contrast (PC) with a dynamic (moving) acquisition plane that tracks the valve. Direct diastolic net flows evaluated from the dynamic PC sequence were compared with flows from 2D-PC scans acquired in a static slice localized at the end-systolic valve position, and also ventricular stroke volumes (SVs) using both planimetry and 2D PC of the great vessels.

RESULTS

The mean tricuspid valve systolic excursion was 17.8 ± 2.5 mm. The 2D valve-tracking PC net diastolic flow showed excellent correlation with SV by right-ventricle planimetry (bias ± 1.96 SD = -0.2 ± 10.4 mL, intraclass correlation coefficient [ICC] = 0.92) and aortic PC (-1.0 ± 13.8 mL, ICC = 0.87). In comparison, static tricuspid valve 2D PC also showed a strong correlation but had greater bias (p = 0.01) versus the right-ventricle SV (10.6 ± 16.1 mL, ICC = 0.61). In most (8 of 9) healthy subjects, trace regurgitation was measured at begin-systole. In one patient, valve-tracking PC displayed a high-velocity jet (380 cm/s) with maximal velocity agreeing with echocardiography.

CONCLUSION

Automated valve-tracking 2D PC is a feasible route toward evaluation of tricuspid regurgitant velocities, potentially solving a major clinical challenge.

摘要

目的

由于三尖瓣瓣面快速移动,心血管磁共振(cardiovascular MR)难以直接测量三尖瓣瓣口流速,但三尖瓣瓣口流速对舒张功能评估至关重要。本研究旨在开发一种自动追踪二维(2D)方法,以测量动态三尖瓣瓣口的血流。

方法

本研究共纳入 9 名健康志愿者和 2 例患者。该方法使用预先训练好的深度学习网络 TVnet 自动追踪心脏长轴电影图像上的三尖瓣瓣面。随后,该追踪信息被用于获取二维相位对比(2D-PC),并通过动态(移动)采集平面来追踪瓣面。与在收缩末期定位在瓣口位置的静态层面采集的 2D-PC 扫描相比,直接从动态 PC 序列评估舒张期净流量,并通过心脏大血管的二维 PC 和心尖四腔心层面面积法测量心室每搏量(stroke volume,SV)。

结果

三尖瓣收缩期位移的平均值为 17.8±2.5mm。2D 瓣面追踪 PC 舒张期净流量与右心室面积法测量的 SV(bias±1.96 SD=-0.2±10.4mL,组内相关系数 [intraclass correlation coefficient,ICC]=0.92)和主动脉 PC(-1.0±13.8mL,ICC=0.87)均具有良好的相关性。相比之下,静态三尖瓣 2D PC 也具有较强的相关性,但与右心室 SV 相比具有更大的偏差(p=0.01)(10.6±16.1mL,ICC=0.61)。在 9 名健康志愿者中,8 名在收缩早期测量到微量反流。在 1 例患者中,瓣面追踪 PC 显示高速射流(380cm/s),最大速度与超声心动图一致。

结论

自动追踪二维相位对比法是评估三尖瓣反流速度的一种可行方法,可能解决了临床上的一大挑战。

相似文献

1
Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast.
Magn Reson Med. 2024 Nov;92(5):1838-1850. doi: 10.1002/mrm.30163. Epub 2024 May 31.
2
4D flow MRI quantification of mitral and tricuspid regurgitation: Reproducibility and consistency relative to conventional MRI.
J Magn Reson Imaging. 2018 Oct;48(4):1147-1158. doi: 10.1002/jmri.26040. Epub 2018 Apr 11.
3
Quantification of tricuspid regurgitation using two-dimensional velocity encoding cine: optimal plane and reproducibility.
Int J Cardiovasc Imaging. 2015 Dec;31 Suppl 2:233-40. doi: 10.1007/s10554-015-0715-x. Epub 2015 Jul 25.
6
Modified RV short axis series--a new method for cardiac MRI measurement of right ventricular volumes.
J Cardiovasc Magn Reson. 2005;7(5):769-74. doi: 10.1080/10976640500295433.
9
A study to determine the contribution to right ventricle stroke volume from pulmonary and tricuspid valve displacement volumes.
Clin Physiol Funct Imaging. 2015 Jul;35(4):283-90. doi: 10.1111/cpf.12162. Epub 2014 May 8.

引用本文的文献

本文引用的文献

2
Valvular regurgitation flow jet assessment using in vitro 4D flow MRI: Implication for mitral regurgitation.
Magn Reson Med. 2022 Apr;87(4):1923-1937. doi: 10.1002/mrm.29082. Epub 2021 Nov 16.
3
7
Comparison of Echocardiographic Assessment of Tricuspid Regurgitation Against Cardiovascular Magnetic Resonance.
JACC Cardiovasc Imaging. 2020 Jul;13(7):1461-1471. doi: 10.1016/j.jcmg.2020.01.008. Epub 2020 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验