Suppr超能文献

MVnet:利用残差神经网络在心脏磁共振长轴电影图像中自动进行二尖瓣平面的时相跟踪:一项多中心、多厂商研究。

MVnet: automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study.

机构信息

Clinical Physiology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.

Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.

出版信息

J Cardiovasc Magn Reson. 2021 Dec 2;23(1):137. doi: 10.1186/s12968-021-00824-2.

Abstract

BACKGROUND

Mitral annular plane systolic excursion (MAPSE) and left ventricular (LV) early diastolic velocity (e') are key metrics of systolic and diastolic function, but not often measured by cardiovascular magnetic resonance (CMR). Its derivation is possible with manual, precise annotation of the mitral valve (MV) insertion points along the cardiac cycle in both two and four-chamber long-axis cines, but this process is highly time-consuming, laborious, and prone to errors. A fully automated, consistent, fast, and accurate method for MV plane tracking is lacking. In this study, we propose MVnet, a deep learning approach for MV point localization and tracking capable of deriving such clinical metrics comparable to human expert-level performance, and validated it in a multi-vendor, multi-center clinical population.

METHODS

The proposed pipeline first performs a coarse MV point annotation in a given cine accurately enough to apply an automated linear transformation task, which standardizes the size, cropping, resolution, and heart orientation, and second, tracks the MV points with high accuracy. The model was trained and evaluated on 38,854 cine images from 703 patients with diverse cardiovascular conditions, scanned on equipment from 3 main vendors, 16 centers, and 7 countries, and manually annotated by 10 observers. Agreement was assessed by the intra-class correlation coefficient (ICC) for both clinical metrics and by the distance error in the MV plane displacement. For inter-observer variability analysis, an additional pair of observers performed manual annotations in a randomly chosen set of 50 patients.

RESULTS

MVnet achieved a fast segmentation (<1 s/cine) with excellent ICCs of 0.94 (MAPSE) and 0.93 (LV e') and a MV plane tracking error of -0.10 ± 0.97 mm. In a similar manner, the inter-observer variability analysis yielded ICCs of 0.95 and 0.89 and a tracking error of -0.15 ± 1.18 mm, respectively.

CONCLUSION

A dual-stage deep learning approach for automated annotation of MV points for systolic and diastolic evaluation in CMR long-axis cine images was developed. The method is able to carefully track these points with high accuracy and in a timely manner. This will improve the feasibility of CMR methods which rely on valve tracking and increase their utility in a clinical setting.

摘要

背景

二尖瓣环平面收缩期位移(MAPSE)和左心室(LV)早期舒张速度(e')是收缩和舒张功能的关键指标,但心血管磁共振(CMR)通常不测量这些指标。通过在二维和四腔心长轴电影的整个心动周期中手动精确标注二尖瓣(MV)插入点,可以得到这些指标,但该过程非常耗时、费力且容易出错。目前,尚缺乏一种完全自动化、一致、快速和准确的 MV 平面跟踪方法。在这项研究中,我们提出了 MVnet,这是一种用于 MV 点定位和跟踪的深度学习方法,能够获得可与人类专家水平相媲美的临床指标,并在多供应商、多中心的临床人群中对其进行了验证。

方法

该流水线首先在给定的电影中进行粗略的 MV 点标注,其精度足以应用自动化线性变换任务,该任务可以标准化大小、裁剪、分辨率和心脏方向,然后以高精度跟踪 MV 点。该模型在来自 703 名患有不同心血管疾病的患者的 38854 张电影图像上进行了训练和评估,这些图像来自 3 家主要供应商、16 个中心和 7 个国家的设备,由 10 名观察者进行手动标注。通过观察者内相关系数(ICC)评估临床指标和 MV 平面位移的距离误差来评估一致性。为了进行观察者间变异性分析,另外一对观察者在随机选择的 50 名患者的集合中进行了手动标注。

结果

MVnet 实现了快速分割(每部电影耗时不到 1 秒),MAPSE 和 LV e'的 ICC 分别为 0.94 和 0.93,MV 平面跟踪误差为-0.10±0.97mm。类似地,观察者间变异性分析的 ICC 分别为 0.95 和 0.89,跟踪误差分别为-0.15±1.18mm。

结论

为 CMR 长轴电影图像中的收缩和舒张评估,开发了一种用于 MV 点自动标注的两级深度学习方法。该方法能够以高精度和及时的方式仔细跟踪这些点。这将提高依赖于瓣膜跟踪的 CMR 方法的可行性,并增加其在临床环境中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caaa/8638514/39d04a56deae/12968_2021_824_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验