Suppr超能文献

关键的门控残基决定了工程化细胞色素P450-脱甲基酶中过氧合酶活性的增强。

Crucial gating residues govern the enhancement of peroxygenase activity in an engineered cytochrome P450 -demethylase.

作者信息

Zhao Panxia, Jiang Yiping, Wang Qian, Chen Jie, Yao Fuquan, Cong Zhiqi

机构信息

CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China

University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China.

出版信息

Chem Sci. 2024 May 3;15(21):8062-8070. doi: 10.1039/d4sc02418d. eCollection 2024 May 29.

Abstract

P450-catalyzed -demethylation reactions have recently attracted particular attention because of their potential applications in lignin bioconversion. We recently enabled the peroxygenase activity of CYP199A4, a NADH-dependent cytochrome P450 monooxygenase from , by engineering a hydrogen peroxide (HO) tunnel. In this report, we reveal by crystallography and molecule dynamics simulations that key residues located at one of the water tunnels in CYP199A4 play a crucial gating role, which enhances the peroxygenase activity by regulating the inflow of HO. These results provide a more complete understanding of the mechanism by which monooxygenase is converted into peroxygenase activity through the HO tunnel engineering (HTE) strategy. Furthermore, a library of engineered CYP199A4 peroxygenases was constructed to explore their application potentials for -demethylation of various methoxy-substituted benzoic acid derivatives. The engineered CYP199A4 peroxygenases showed good functional group tolerance and preferential -demethylation at the - or -position, indicating potential -demethylation of H- and G-type lignin monomers. This work reveals the feasibility of the HTE strategy in creating P450 peroxygenase from a mechanistic perspective, laying the foundation for developing an effective P450 -demethylase applicable in lignin bioconversion.

摘要

由于P450催化的去甲基化反应在木质素生物转化中的潜在应用,最近受到了特别关注。我们最近通过构建一条过氧化氢(H₂O₂)通道,使来自[具体来源未提及]的一种依赖NADH的细胞色素P450单加氧酶CYP199A4具备了过氧合酶活性。在本报告中,我们通过晶体学和分子动力学模拟揭示,位于CYP199A4一条水通道中的关键残基发挥着至关重要的门控作用,通过调节H₂O₂的流入来增强过氧合酶活性。这些结果让我们对单加氧酶通过H₂O₂通道工程(HTE)策略转化为过氧合酶活性的机制有了更全面的理解。此外,构建了一个工程化CYP199A4过氧合酶文库,以探索它们对各种甲氧基取代苯甲酸衍生物进行去甲基化的应用潜力。工程化的CYP199A4过氧合酶表现出良好的官能团耐受性,并且在邻位或对位优先进行去甲基化,这表明它们对H型和G型木质素单体具有潜在的去甲基化能力。这项工作从机制角度揭示了HTE策略在创建P450过氧合酶方面的可行性,为开发一种适用于木质素生物转化的有效P450去甲基酶奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33f1/11134341/25cf4dd4031d/d4sc02418d-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验