文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动测量3D主动脉模型的主动脉横截面积

Automating aortic cross-sectional measurement of 3D aorta models.

作者信息

Bramlet Matthew, Mohamadi Salman, Srinivas Jayishnu, Dassanayaka Tehan, Okammor Tafara, Shadden Mark, Sutton Bradley P

机构信息

University of Illinois College of Medicine at Peoria, Pediatric Cardiology, Peoria, Illinois, United States.

University of Illinois Urbana Champaign, Bioengineering, Champaign, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2024 May;11(3):034503. doi: 10.1117/1.JMI.11.3.034503. Epub 2024 May 29.


DOI:10.1117/1.JMI.11.3.034503
PMID:38817710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11135202/
Abstract

PURPOSE: Aortic dissection carries a mortality as high as 50%, but surgical palliation is also fraught with morbidity risks of stroke or paralysis. As such, a significant focus of medical decision making is on longitudinal aortic diameters. We hypothesize that three-dimensional (3D) modeling affords a more efficient methodology toward automated longitudinal aortic measurement. The first step is to automate the measurement of manually segmented 3D models of the aorta. We developed and validated an algorithm to analyze a 3D segmented aorta and output the maximum dimension of minimum cross-sectional areas in a stepwise progression from the diaphragm to the aortic root. Accordingly, the goal is to assess the diagnostic validity of the 3D modeling measurement as a substitute for existing 2D measurements. APPROACH: From January 2021 to June 2022, 66 3D non-contrast steady-state free precession magnetic resonance images of aortic pathology with clinical aortic measurements were identified; 3D aorta models were manually segmented. A novel mathematical algorithm was applied to each model to generate maximal aortic diameters from the diaphragm to the root, which were then correlated to clinical measurements. RESULTS: With a 76% success rate, we analyzed the resulting 50 3D aortic models utilizing the automated measurement tool. There was an excellent correlation between the automated measurement and the clinical measurement. The intra-class correlation coefficient and -value for each of the nine measured locations of the aorta were as follows: sinus of valsalva, 0.99, ; sino-tubular junction, 0.89, ; ascending aorta, 0.97, ; brachiocephalic artery, 0.96, ; transverse segment 1, 0.89, ; transverse segment 2, 0.93, ; isthmus region, 0.92, ; descending aorta, 0.96, ; and aorta at diaphragm, 0.3, . CONCLUSIONS: Automating diagnostic measurements that appease clinical confidence is a critical first step in a fully automated process. This tool demonstrates excellent correlation between measurements derived from manually segmented 3D models and the clinical measurements, laying the foundation for transitioning analytic methodologies from 2D to 3D.

摘要

目的:主动脉夹层的死亡率高达50%,但手术缓解也充满了中风或瘫痪的发病风险。因此,医疗决策的一个重要重点是主动脉的纵向直径。我们假设三维(3D)建模为自动纵向主动脉测量提供了一种更有效的方法。第一步是自动测量手动分割的主动脉3D模型。我们开发并验证了一种算法,用于分析3D分割的主动脉,并从膈肌逐步到主动脉根部输出最小横截面积的最大尺寸。因此,目标是评估3D建模测量作为现有二维测量替代方法的诊断有效性。 方法:从2021年1月至2022年6月,识别出66例具有临床主动脉测量值的主动脉病变的3D非对比稳态自由进动磁共振图像;手动分割3D主动脉模型。将一种新颖的数学算法应用于每个模型,以生成从膈肌到根部的最大主动脉直径,然后将其与临床测量值进行关联。 结果:我们利用自动测量工具分析了由此得到的50个3D主动脉模型,成功率为76%。自动测量与临床测量之间存在极好的相关性。主动脉九个测量位置的组内相关系数和p值如下:主动脉瓣窦,0.99,[此处p值缺失];窦管交界处,0.89,[此处p值缺失];升主动脉,0.97,[此处p值缺失];头臂动脉,0.96,[此处p值缺失];横段1,0.89,[此处p值缺失];横段2,0.93,[此处p值缺失];峡部区域,0.92,[此处p值缺失];降主动脉,0.96,[此处p值缺失];膈肌处主动脉,0.3,[此处p值缺失]。 结论:使诊断测量自动化并增强临床信心是全自动过程的关键第一步。该工具证明了从手动分割的3D模型得出的测量值与临床测量值之间具有极好的相关性,为将分析方法从二维转换为三维奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/513663968f7e/JMI-011-034503-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/005aeee4fe0f/JMI-011-034503-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/8b6e4523e4e9/JMI-011-034503-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/d5f86eb4ae52/JMI-011-034503-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/378e72fbb218/JMI-011-034503-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/a06fd121c150/JMI-011-034503-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/3e318bd287ae/JMI-011-034503-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/9d1375bd41f9/JMI-011-034503-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/232a283cbe35/JMI-011-034503-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/9f3adbb5b7c6/JMI-011-034503-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/8a7f5e78d587/JMI-011-034503-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/513663968f7e/JMI-011-034503-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/005aeee4fe0f/JMI-011-034503-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/8b6e4523e4e9/JMI-011-034503-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/d5f86eb4ae52/JMI-011-034503-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/378e72fbb218/JMI-011-034503-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/a06fd121c150/JMI-011-034503-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/3e318bd287ae/JMI-011-034503-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/9d1375bd41f9/JMI-011-034503-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/232a283cbe35/JMI-011-034503-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/9f3adbb5b7c6/JMI-011-034503-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/8a7f5e78d587/JMI-011-034503-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cd/11135202/513663968f7e/JMI-011-034503-g011.jpg

相似文献

[1]
Automating aortic cross-sectional measurement of 3D aorta models.

J Med Imaging (Bellingham). 2024-5

[2]
3D aortic morphology and stiffness in MRI using semi-automated cylindrical active surface provides optimized description of the vascular effects of aging and hypertension.

Comput Biol Med. 2018-10-11

[3]
Patient-specific three-dimensional aortic arch modeling for automatic measurements: clinical validation in aortic coarctation.

J Cardiovasc Med (Hagerstown). 2020-7

[4]
Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction.

J Cardiovasc Magn Reson. 2017-3-8

[5]
MRI measurements of the thoracic aorta and pulmonary artery.

J Med Imaging Radiat Oncol. 2018-2

[6]
Analysis of the thoracic aorta using a semi-automated post processing tool.

Eur J Radiol. 2013-5-13

[7]
Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications.

Circ Cardiovasc Imaging. 2012-12-10

[8]
Value of aortic volumes assessed by automated segmentation of 3D MRI data in patients with thoracic aortic dilatation: A case-control study.

Diagn Interv Imaging. 2023-9

[9]
Exact monitoring of aortic diameters in Marfan patients without gadolinium contrast: intraindividual comparison of 2D SSFP imaging with 3D CE-MRA and echocardiography.

Eur Radiol. 2014-10-15

[10]
Automated analysis of four-dimensional magnetic resonance images of the human aorta.

Int J Cardiovasc Imaging. 2010-2-10

引用本文的文献

[1]
Applications of mixed reality with medical imaging for training and clinical practice.

J Med Imaging (Bellingham). 2024-11

本文引用的文献

[1]
SCMR expert consensus statement for cardiovascular magnetic resonance of acquired and non-structural pediatric heart disease.

J Cardiovasc Magn Reson. 2022-7-21

[2]
Detection, segmentation, simulation and visualization of aortic dissections: A review.

Med Image Anal. 2020-10

[3]
Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.

Magn Reson Med. 2020-10

[4]
Automated Quantification of Diseased Thoracic Aortic Longitudinal Centerline and Surface Curvatures.

J Biomech Eng. 2020-4-1

[5]
Treatment of vascular Ehlers-Danlos syndrome: a systematic review.

Ann Surg. 2013-8

[6]
Automated segmentation of the aorta from phase contrast MR images: validation against expert tracing in healthy volunteers and in patients with a dilated aorta.

J Magn Reson Imaging. 2010-4

[7]
Marfan syndrome. Part 2: treatment and management of patients.

Nat Rev Cardiol. 2010-3-30

[8]
2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine.

Circulation. 2010-4-6

[9]
Normal values for aortic diameters in children and adolescents--assessment in vivo by contrast-enhanced CMR-angiography.

J Cardiovasc Magn Reson. 2008-12-5

[10]
Clinical and epidemiological description of aortic dissection in Turner's syndrome.

Cardiol Young. 2006-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索