Suppr超能文献

使用深度学习对4D流MRI进行全自动化3D主动脉分割以进行血流动力学分析。

Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.

作者信息

Berhane Haben, Scott Michael, Elbaz Mohammed, Jarvis Kelly, McCarthy Patrick, Carr James, Malaisrie Chris, Avery Ryan, Barker Alex J, Robinson Joshua D, Rigsby Cynthia K, Markl Michael

机构信息

Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.

Department of Biomedical Engineering, Northwestern University, Chicago, Illinois.

出版信息

Magn Reson Med. 2020 Oct;84(4):2204-2218. doi: 10.1002/mrm.28257. Epub 2020 Mar 13.

Abstract

PURPOSE

To generate fully automated and fast 4D-flow MRI-based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions.

METHODS

A total of 1018 subjects with aortic 4D-flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D-flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland-Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40.

RESULTS

Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930-0.966), Hausdorff distance of 2.80 (2.13-4.35), and average symmetrical surface distance of 0.176 (0.119-0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network-based analysis (median Dice score: 0.953-0.959; Hausdorff distance: 2.24-2.91; and average symmetrical surface distance: 0.145-1.98 to observers) demonstrated similar reproducibility.

CONCLUSIONS

Deep learning enabled fast and automated 3D aortic segmentation from 4D-flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.

摘要

目的

利用深度学习从基于4D流MRI生成主动脉的全自动快速3D分割,以对主动脉血流、峰值速度和尺寸进行可重复的量化。

方法

共有1018名接受主动脉4D流MRI检查的受试者(528名患有二叶式主动脉瓣,376名患有三叶式主动脉瓣并伴有主动脉扩张,114名健康对照)组成数据集。训练了一个卷积神经网络,以从4D流数据生成3D主动脉分割。手动分割用作真实标准(499例用于训练,101例用于验证,418例用于测试)。计算Dice分数、豪斯多夫距离和平均对称表面距离以评估性能。在升主动脉、主动脉弓和降主动脉处对主动脉血流、峰值速度和管腔尺寸进行量化,并使用布兰德-奥特曼分析进行比较。在40例的子集中评估了手动分析的观察者间变异性。

结果

卷积神经网络分割需要0.438±0.355秒,而手动分析需要630±254秒,并且表现出色,中位Dice分数为0.951(0.930 - 0.966),豪斯多夫距离为2.80(2.13 - 4.35),平均对称表面距离为0.176(0.119 - 0.290)。在血流、峰值速度和尺寸方面发现了与手动分析相比具有低偏差且一致性界限差异小于10%的出色一致性。对于主动脉容积,一致性界限在16.3%以内为中等。观察者间变异性(中位Dice分数:0.950;豪斯多夫距离:2.45;平均对称表面距离:0.145)和基于卷积神经网络的分析(中位Dice分数:0.953 - 0.959;豪斯多夫距离:2.24 - 2.91;平均对称表面距离:0.145 - 1.98,相对于观察者)显示出相似的可重复性。

结论

深度学习能够从4D流MRI快速自动地进行3D主动脉分割,证明了其在高效临床工作流程中的潜力。未来的研究应调查其在其他脉管系统和多厂商应用中的效用。

相似文献

9
Deep learning-based velocity antialiasing of 4D-flow MRI.基于深度学习的 4D-flow MRI 速度去假频处理。
Magn Reson Med. 2022 Jul;88(1):449-463. doi: 10.1002/mrm.29205. Epub 2022 Apr 5.

引用本文的文献

本文引用的文献

5
Automated multi-atlas segmentation of cardiac 4D flow MRI.心脏 4D 流 MRI 的自动多图谱分割。
Med Image Anal. 2018 Oct;49:128-140. doi: 10.1016/j.media.2018.08.003. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验