Suppr超能文献

在CT图像上使用基于三维图像块的卷积神经网络量化肺裂完整性以进行肺气肿治疗规划。

Quantifying lung fissure integrity using a three-dimensional patch-based convolutional neural network on CT images for emphysema treatment planning.

作者信息

Tada Dallas K, Teng Pangyu, Vyapari Kalyani, Banola Ashley, Foster George, Diaz Esteban, Kim Grace Hyun J, Goldin Jonathan G, Abtin Fereidoun, McNitt-Gray Michael, Brown Matthew S

机构信息

The University of California, Los Angeles (UCLA), David Geffen School of Medicine at UCLA, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, Los Angeles, California, United States.

出版信息

J Med Imaging (Bellingham). 2024 May;11(3):034502. doi: 10.1117/1.JMI.11.3.034502. Epub 2024 May 29.

Abstract

PURPOSE

Evaluation of lung fissure integrity is required to determine whether emphysema patients have complete fissures and are candidates for endobronchial valve (EBV) therapy. We propose a deep learning (DL) approach to segment fissures using a three-dimensional patch-based convolutional neural network (CNN) and quantitatively assess fissure integrity on CT to evaluate it in subjects with severe emphysema.

APPROACH

From an anonymized image database of patients with severe emphysema, 129 CT scans were used. Lung lobe segmentations were performed to identify lobar regions, and the boundaries among these regions were used to construct approximate interlobar regions of interest (ROIs). The interlobar ROIs were annotated by expert image analysts to identify voxels where the fissure was present and create a reference ROI that excluded non-fissure voxels (where the fissure is incomplete). A CNN configured by nnU-Net was trained using 86 CT scans and their corresponding reference ROIs to segment the ROIs of left oblique fissure (LOF), right oblique fissure (ROF), and right horizontal fissure (RHF). For an independent test set of 43 cases, fissure integrity was quantified by mapping the segmented fissure ROI along the interlobar ROI. A fissure integrity score (FIS) was then calculated as the percentage of labeled fissure voxels divided by total voxels in the interlobar ROI. Predicted FIS (p-FIS) was quantified from the CNN output, and statistical analyses were performed comparing p-FIS and reference FIS (r-FIS).

RESULTS

The absolute percent error mean (±SD) between r-FIS and p-FIS for the test set was 4.0% (), 6.0% (), and 12.2% () for the LOF, ROF, and RHF, respectively.

CONCLUSIONS

A DL approach was developed to segment lung fissures on CT images and accurately quantify FIS. It has potential to assist in the identification of emphysema patients who would benefit from EBV treatment.

摘要

目的

评估肺裂的完整性对于确定肺气肿患者是否具有完整肺裂以及是否适合接受支气管内瓣膜(EBV)治疗至关重要。我们提出一种深度学习(DL)方法,使用基于三维补丁的卷积神经网络(CNN)对肺裂进行分割,并在CT上对肺裂完整性进行定量评估,以用于重度肺气肿患者的评估。

方法

从重度肺气肿患者的匿名图像数据库中选取了129例CT扫描图像。进行肺叶分割以识别肺叶区域,并利用这些区域之间的边界构建近似的叶间感兴趣区域(ROI)。叶间ROI由专业图像分析人员进行标注,以识别存在肺裂的体素,并创建一个排除非肺裂体素(即肺裂不完整处)的参考ROI。使用nnU-Net配置的CNN,利用86例CT扫描图像及其相应的参考ROI进行训练,以分割左斜裂(LOF)、右斜裂(ROF)和右水平裂(RHF)的ROI。对于43例独立测试集,通过沿叶间ROI映射分割的肺裂ROI来量化肺裂完整性。然后计算肺裂完整性评分(FIS),即标记的肺裂体素占叶间ROI总体素的百分比。从CNN输出中量化预测的FIS(p-FIS),并进行统计分析以比较p-FIS和参考FIS(r-FIS)。

结果

测试集的LOF、ROF和RHF的r-FIS与p-FIS之间的绝对百分比误差均值(±标准差)分别为4.0%()、6.0%()和12.2%()。

结论

开发了一种DL方法来分割CT图像上的肺裂并准确量化FIS。它有可能帮助识别将从EBV治疗中获益的肺气肿患者。

相似文献

1
Quantifying lung fissure integrity using a three-dimensional patch-based convolutional neural network on CT images for emphysema treatment planning.
J Med Imaging (Bellingham). 2024 May;11(3):034502. doi: 10.1117/1.JMI.11.3.034502. Epub 2024 May 29.
3
Effect of fissure integrity on lung volume reduction using a polymer sealant in advanced emphysema.
Thorax. 2012 Apr;67(4):302-8. doi: 10.1136/thoraxjnl-2011-201038. Epub 2012 Feb 28.
4
An Integrative Approach of the Fissure Completeness Score and Chartis Assessment in Endobronchial Valve Treatment for Emphysema.
Int J Chron Obstruct Pulmon Dis. 2020 Jun 9;15:1325-1334. doi: 10.2147/COPD.S242210. eCollection 2020.
7
The fissure: interlobar collateral ventilation and implications for endoscopic therapy in emphysema.
Int J Chron Obstruct Pulmon Dis. 2016 Apr 13;11:765-73. doi: 10.2147/COPD.S103807. eCollection 2016.
8
Fissure Integrity and Volume Reduction in Emphysema: A Retrospective Study.
Respiration. 2016;91(6):471-9. doi: 10.1159/000446288. Epub 2016 Jun 1.
10

引用本文的文献

本文引用的文献

3
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
4
An Integrative Approach of the Fissure Completeness Score and Chartis Assessment in Endobronchial Valve Treatment for Emphysema.
Int J Chron Obstruct Pulmon Dis. 2020 Jun 9;15:1325-1334. doi: 10.2147/COPD.S242210. eCollection 2020.
5
An open-source framework for pulmonary fissure completeness assessment.
Comput Med Imaging Graph. 2020 Jul;83:101712. doi: 10.1016/j.compmedimag.2020.101712. Epub 2020 Feb 21.
7
FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images.
IEEE Trans Med Imaging. 2019 Jan;38(1):156-166. doi: 10.1109/TMI.2018.2858202. Epub 2018 Aug 10.
8
Convolutional neural networks: an overview and application in radiology.
Insights Imaging. 2018 Aug;9(4):611-629. doi: 10.1007/s13244-018-0639-9. Epub 2018 Jun 22.
9
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Med Image Anal. 2018 Jan;43:98-111. doi: 10.1016/j.media.2017.10.002. Epub 2017 Oct 5.
10
Prevalence of incomplete interlobar fissures of the lung.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016 Dec;160(4):491-494. doi: 10.5507/bp.2016.049. Epub 2016 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验