Suppr超能文献

FissureNet:一种用于 CT 图像中肺裂检测的深度学习方法。

FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images.

出版信息

IEEE Trans Med Imaging. 2019 Jan;38(1):156-166. doi: 10.1109/TMI.2018.2858202. Epub 2018 Aug 10.

Abstract

Pulmonary fissure detection in computed tomography (CT) is a critical component for automatic lobar segmentation. The majority of fissure detection methods use feature descriptors that are hand-crafted, low-level, and have local spatial extent. The design of such feature detectors is typically targeted toward normal fissure anatomy, yielding low sensitivity to weak, and abnormal fissures that are common in clinical data sets. Furthermore, local features commonly suffer from low specificity, as the complex textures in the lung can be indistinguishable from the fissure when the global context is not considered. We propose a supervised discriminative learning framework for simultaneous feature extraction and classification. The proposed framework, called FissureNet, is a coarse-to-fine cascade of two convolutional neural networks. The coarse-to-fine strategy alleviates the challenges associated with training a network to segment a thin structure that represents a small fraction of the image voxels. FissureNet was evaluated on a cohort of 3706 subjects with inspiration and expiration 3DCT scans from the COPDGene clinical trial and a cohort of 20 subjects with 4DCT scans from a lung cancer clinical trial. On both data sets, FissureNet showed superior performance compared with a deep learning approach using the U-Net architecture and a Hessian-based fissure detection method in terms of area under the precision-recall curve (PR-AUC). The overall PR-AUC for FissureNet, U-Net, and Hessian on the COPDGene (lung cancer) data set was 0.980 (0.966), 0.963 (0.937), and 0.158 (0.182), respectively. On a subset of 30 COPDGene scans, FissureNet was compared with a recently proposed advanced fissure detection method called derivative of sticks (DoS) and showed superior performance with a PR-AUC of 0.991 compared with 0.668 for DoS.

摘要

在计算机断层扫描(CT)中检测肺裂是自动叶段分割的关键组成部分。大多数肺裂检测方法使用手工制作的、低级别的、具有局部空间范围的特征描述符。这些特征检测器的设计通常针对正常的肺裂解剖结构,对在临床数据集常见的弱裂和异常裂的敏感性较低。此外,由于不考虑全局上下文,肺部的复杂纹理与肺裂在某些情况下可能难以区分,因此局部特征通常特异性较低。我们提出了一种用于同时进行特征提取和分类的监督判别学习框架。该框架称为 FissureNet,是一个由两个卷积神经网络组成的粗到精级联。粗到精的策略缓解了训练网络分割代表图像体素一小部分的细结构的相关挑战。在 COPDGene 临床试验的 3706 名受试者吸气和呼气 3DCT 扫描队列和肺癌临床试验的 20 名受试者 4DCT 扫描队列上评估了 FissureNet。在这两个数据集上,与使用 U-Net 架构的深度学习方法和基于 Hessian 的肺裂检测方法相比,FissureNet 在精度-召回曲线下面积(PR-AUC)方面表现出更好的性能。FissureNet、U-Net 和 Hessian 在 COPDGene(肺癌)数据集上的总体 PR-AUC 分别为 0.980(0.966)、0.963(0.937)和 0.158(0.182)。在 COPDGene 扫描的 30 个子集上,FissureNet 与最近提出的称为“sticks 的导数”(DoS)的高级肺裂检测方法进行了比较,其 PR-AUC 为 0.991,而 DoS 的 PR-AUC 为 0.668。

相似文献

1
FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images.
IEEE Trans Med Imaging. 2019 Jan;38(1):156-166. doi: 10.1109/TMI.2018.2858202. Epub 2018 Aug 10.
2
Automated classification of lung bronchovascular anatomy in CT using AdaBoost.
Med Image Anal. 2007 Jun;11(3):315-24. doi: 10.1016/j.media.2007.03.004. Epub 2007 Mar 30.
3
Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
IEEE Trans Med Imaging. 2006 Jan;25(1):1-16. doi: 10.1109/TMI.2005.859209.
4
Weakly-Supervised Segmentation-Based Quantitative Characterization of Pulmonary Cavity Lesions in CT Scans.
IEEE J Transl Eng Health Med. 2024 May 9;12:457-467. doi: 10.1109/JTEHM.2024.3399261. eCollection 2024.
5
Supervised enhancement filters: application to fissure detection in chest CT scans.
IEEE Trans Med Imaging. 2008 Jan;27(1):1-10. doi: 10.1109/TMI.2007.900447.
6
Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
Oncologist. 2019 Sep;24(9):1159-1165. doi: 10.1634/theoncologist.2018-0908. Epub 2019 Apr 17.
7
Automatic segmentation of pulmonary fissures in computed tomography images using 3D surface features.
J Digit Imaging. 2014 Feb;27(1):58-67. doi: 10.1007/s10278-013-9632-5.
8
Pulmonary Fissure Detection in CT Images Using a Derivative of Stick Filter.
IEEE Trans Med Imaging. 2016 Jun;35(6):1488-500. doi: 10.1109/TMI.2016.2517680. Epub 2016 Jan 13.
9
Robust explanation supervision for false positive reduction in pulmonary nodule detection.
Med Phys. 2024 Mar;51(3):1687-1701. doi: 10.1002/mp.16937. Epub 2024 Jan 15.
10
Segmentation of lung lobes in high-resolution isotropic CT images.
IEEE Trans Biomed Eng. 2009 May;56(5):1383-93. doi: 10.1109/TBME.2009.2014074. Epub 2009 Feb 6.

引用本文的文献

2
Preserved ratio impaired spirometry: clinical, imaging and artificial intelligence perspective.
J Thorac Dis. 2025 Jan 24;17(1):450-460. doi: 10.21037/jtd-24-1582. Epub 2025 Jan 22.
3
AAPM Truth-based CT (TrueCT) reconstruction grand challenge.
Med Phys. 2025 Apr;52(4):1978-1990. doi: 10.1002/mp.17619. Epub 2025 Jan 14.
4
Sparse keypoint segmentation of lung fissures: efficient geometric deep learning for abstracting volumetric images.
Int J Comput Assist Radiol Surg. 2025 Mar;20(3):465-473. doi: 10.1007/s11548-024-03310-z. Epub 2025 Jan 7.
5
Pulmonary Fissure Segmentation in CT Images Using Image Filtering and Machine Learning.
Tomography. 2024 Oct 9;10(10):1645-1664. doi: 10.3390/tomography10100121.
6
The pleural gradient does not reflect the superimposed pressure in patients with class III obesity.
Crit Care. 2024 Sep 16;28(1):306. doi: 10.1186/s13054-024-05097-6.
7
Quantifying lung fissure integrity using a three-dimensional patch-based convolutional neural network on CT images for emphysema treatment planning.
J Med Imaging (Bellingham). 2024 May;11(3):034502. doi: 10.1117/1.JMI.11.3.034502. Epub 2024 May 29.
8
Vessel and Airway Characteristics in One-Year Computed Tomography-defined Rapid Emphysema Progression: SPIROMICS.
Ann Am Thorac Soc. 2024 Jul;21(7):1022-1033. doi: 10.1513/AnnalsATS.202304-383OC.
9
LungViT: Ensembling Cascade of Texture Sensitive Hierarchical Vision Transformers for Cross-Volume Chest CT Image-to-Image Translation.
IEEE Trans Med Imaging. 2024 Jul;43(7):2448-2465. doi: 10.1109/TMI.2024.3367321. Epub 2024 Jul 1.
10
A Survey on Artificial Intelligence in Pulmonary Imaging.
Wiley Interdiscip Rev Data Min Knowl Discov. 2023 Nov-Dec;13(6). doi: 10.1002/widm.1510. Epub 2023 Jul 7.

本文引用的文献

1
Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression.
Chest. 2018 Jan;153(1):65-76. doi: 10.1016/j.chest.2017.09.022. Epub 2017 Sep 21.
2
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
4
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
The fissure: interlobar collateral ventilation and implications for endoscopic therapy in emphysema.
Int J Chron Obstruct Pulmon Dis. 2016 Apr 13;11:765-73. doi: 10.2147/COPD.S103807. eCollection 2016.
6
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
7
Pulmonary Fissure Detection in CT Images Using a Derivative of Stick Filter.
IEEE Trans Med Imaging. 2016 Jun;35(6):1488-500. doi: 10.1109/TMI.2016.2517680. Epub 2016 Jan 13.
8
Automatic 3D pulmonary nodule detection in CT images: A survey.
Comput Methods Programs Biomed. 2016 Feb;124:91-107. doi: 10.1016/j.cmpb.2015.10.006. Epub 2015 Dec 2.
9
Endoscopic bronchial valve treatment: patient selection and special considerations.
Int J Chron Obstruct Pulmon Dis. 2015 Oct 8;10:2147-57. doi: 10.2147/COPD.S63473. eCollection 2015.
10
The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验