IEEE Trans Med Imaging. 2019 Jan;38(1):156-166. doi: 10.1109/TMI.2018.2858202. Epub 2018 Aug 10.
Pulmonary fissure detection in computed tomography (CT) is a critical component for automatic lobar segmentation. The majority of fissure detection methods use feature descriptors that are hand-crafted, low-level, and have local spatial extent. The design of such feature detectors is typically targeted toward normal fissure anatomy, yielding low sensitivity to weak, and abnormal fissures that are common in clinical data sets. Furthermore, local features commonly suffer from low specificity, as the complex textures in the lung can be indistinguishable from the fissure when the global context is not considered. We propose a supervised discriminative learning framework for simultaneous feature extraction and classification. The proposed framework, called FissureNet, is a coarse-to-fine cascade of two convolutional neural networks. The coarse-to-fine strategy alleviates the challenges associated with training a network to segment a thin structure that represents a small fraction of the image voxels. FissureNet was evaluated on a cohort of 3706 subjects with inspiration and expiration 3DCT scans from the COPDGene clinical trial and a cohort of 20 subjects with 4DCT scans from a lung cancer clinical trial. On both data sets, FissureNet showed superior performance compared with a deep learning approach using the U-Net architecture and a Hessian-based fissure detection method in terms of area under the precision-recall curve (PR-AUC). The overall PR-AUC for FissureNet, U-Net, and Hessian on the COPDGene (lung cancer) data set was 0.980 (0.966), 0.963 (0.937), and 0.158 (0.182), respectively. On a subset of 30 COPDGene scans, FissureNet was compared with a recently proposed advanced fissure detection method called derivative of sticks (DoS) and showed superior performance with a PR-AUC of 0.991 compared with 0.668 for DoS.
在计算机断层扫描(CT)中检测肺裂是自动叶段分割的关键组成部分。大多数肺裂检测方法使用手工制作的、低级别的、具有局部空间范围的特征描述符。这些特征检测器的设计通常针对正常的肺裂解剖结构,对在临床数据集常见的弱裂和异常裂的敏感性较低。此外,由于不考虑全局上下文,肺部的复杂纹理与肺裂在某些情况下可能难以区分,因此局部特征通常特异性较低。我们提出了一种用于同时进行特征提取和分类的监督判别学习框架。该框架称为 FissureNet,是一个由两个卷积神经网络组成的粗到精级联。粗到精的策略缓解了训练网络分割代表图像体素一小部分的细结构的相关挑战。在 COPDGene 临床试验的 3706 名受试者吸气和呼气 3DCT 扫描队列和肺癌临床试验的 20 名受试者 4DCT 扫描队列上评估了 FissureNet。在这两个数据集上,与使用 U-Net 架构的深度学习方法和基于 Hessian 的肺裂检测方法相比,FissureNet 在精度-召回曲线下面积(PR-AUC)方面表现出更好的性能。FissureNet、U-Net 和 Hessian 在 COPDGene(肺癌)数据集上的总体 PR-AUC 分别为 0.980(0.966)、0.963(0.937)和 0.158(0.182)。在 COPDGene 扫描的 30 个子集上,FissureNet 与最近提出的称为“sticks 的导数”(DoS)的高级肺裂检测方法进行了比较,其 PR-AUC 为 0.991,而 DoS 的 PR-AUC 为 0.668。