Suppr超能文献

开源肺裂完整性评估框架。

An open-source framework for pulmonary fissure completeness assessment.

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

出版信息

Comput Med Imaging Graph. 2020 Jul;83:101712. doi: 10.1016/j.compmedimag.2020.101712. Epub 2020 Feb 21.

Abstract

We present an open-source framework for pulmonary fissure completeness assessment. Fissure incompleteness has been shown to associate with emphysema treatment outcomes, motivating the development of tools that facilitate completeness estimation. Generally, the task of fissure completeness assessment requires accurate detection of fissures and definition of the boundary surfaces separating the lung lobes. The framework we describe acknowledges a) the modular nature of fissure detection and lung lobe segmentation (lobe boundary detection), and b) that methods to address these challenges are varied and continually developing. It is designed to be readily deployable on existing lung lobe segmentation and fissure detection data sets. The framework consists of multiple components: a flexible quality control module that enables rapid assessment of lung lobe segmentations, an interactive lobe segmentation tool exposed through 3D Slicer for handling challenging cases, a flexible fissure representation using particles-based sampling that can handle fissure feature-strength or binary fissure detection images, and a module that performs fissure completeness estimation using voxel counting and a novel surface area estimation approach. We demonstrate the usage of the proposed framework by deploying on 100 cases exhibiting various levels of fissure completeness. We compare the two completeness level approaches and also compare to visual reads. The code is available to the community via github as part of the Chest Imaging Platform and a 3D Slicer extension module.

摘要

我们提出了一个用于评估肺裂完整性的开源框架。肺裂不完整已被证明与肺气肿治疗结果有关,这促使人们开发了有助于完整性评估的工具。通常,肺裂完整性评估的任务需要准确地检测肺裂并定义分离肺叶的边界表面。我们描述的框架承认:a)肺裂检测和肺叶分割(叶边界检测)的模块化性质,以及 b)解决这些挑战的方法多种多样且不断发展。它旨在轻松部署在现有的肺叶分割和肺裂检测数据集上。该框架由多个组件组成:一个灵活的质量控制模块,可快速评估肺叶分割;一个通过 3D Slicer 暴露的交互式叶分割工具,用于处理具有挑战性的情况;一个使用基于粒子的采样的灵活肺裂表示形式,可处理肺裂特征强度或二进制肺裂检测图像;以及一个使用体素计数和一种新的表面积估计方法执行肺裂完整性估计的模块。我们通过在 100 个表现出不同程度肺裂完整性的病例上部署来演示所提出框架的使用。我们比较了两种完整性级别方法,也与视觉读数进行了比较。该代码可通过 github 获得,作为 Chest Imaging Platform 的一部分和 3D Slicer 扩展模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca71/7363554/e3c4314546be/nihms-1568189-f0001.jpg

相似文献

1
An open-source framework for pulmonary fissure completeness assessment.开源肺裂完整性评估框架。
Comput Med Imaging Graph. 2020 Jul;83:101712. doi: 10.1016/j.compmedimag.2020.101712. Epub 2020 Feb 21.
8
Pulmonary lobe segmentation in CT examinations using implicit surface fitting.利用隐式曲面拟合进行 CT 检查中的肺叶分割。
IEEE Trans Med Imaging. 2009 Dec;28(12):1986-96. doi: 10.1109/TMI.2009.2027117. Epub 2009 Jul 21.

本文引用的文献

1
CT Image Enhancement for Feature Detection and Localization.用于特征检测与定位的CT图像增强
Med Image Comput Comput Assist Interv. 2017 Sep;10434:224-232. doi: 10.1007/978-3-319-66185-8_26. Epub 2017 Sep 4.
6
Review of automatic pulmonary lobe segmentation methods from CT.CT图像中自动肺叶分割方法综述。
Comput Med Imaging Graph. 2015 Mar;40:13-29. doi: 10.1016/j.compmedimag.2014.10.008. Epub 2014 Oct 28.
9
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验