Ganjalizadeh Vahid, Hawkins Aaron R, Schmidt Holger
School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA.
Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, 84602, USA.
Optica. 2023 Jul 20;10(7):812-818. doi: 10.1364/optica.489068. Epub 2023 Jun 22.
Integrated optofluidic biosensors have demonstrated ultrasensitivity down to single particle detection and attomolar target concentrations. However, a wide dynamic range is highly desirable in practice and can usually only be achieved by using multiple detection modalities or sacrificing linearity. Here, we demonstrate an analysis technique that uses temporal excitation at two different time scales to simultaneously enable digital and analog detection of fluorescent targets. We demonstrated the seamless detection of nanobeads across eight orders of magnitude from attomolar to nanomolar concentration. Furthermore, a combination of spectrally varying modulation frequencies and a closed-loop feedback system that provides rapid adjustment of excitation laser powers enables multiplex analysis in the presence of vastly different concentrations. We demonstrated this ability to detect across scales via an analysis of a mixture of fluorescent nanobeads at femtomolar and picomolar concentrations. This technique advances the performance and versatility of integrated biosensors, especially toward point-of-use applications.
集成光流控生物传感器已展现出低至单粒子检测和阿托摩尔目标浓度的超灵敏度。然而,在实际应用中,宽动态范围是非常理想的,通常只能通过使用多种检测方式或牺牲线性度来实现。在此,我们展示了一种分析技术,该技术利用两个不同时间尺度的时间激发来同时实现对荧光目标的数字和模拟检测。我们展示了从阿托摩尔到纳摩尔浓度跨越八个数量级的纳米珠的无缝检测。此外,光谱变化的调制频率与提供激发激光功率快速调整的闭环反馈系统相结合,能够在存在极大不同浓度的情况下进行多重分析。我们通过对飞摩尔和皮摩尔浓度的荧光纳米珠混合物的分析展示了这种跨尺度检测能力。这项技术提升了集成生物传感器的性能和通用性,尤其朝着即时检测应用方向发展。