Meena Gopikrishnan Gopalakrishnan, Wright Joel G, Hawkins Aaron R, Schmidt Holger
School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA.
Electrical and Computer Engineering Department, Brigham Young University, Provo, UT 84602 USA.
IEEE J Sel Top Quantum Electron. 2021 Sep-Oct;27(5). doi: 10.1109/jstqe.2021.3055078. Epub 2021 Jan 28.
High sensitivity and easy integration with microfabrication techniques has made silicon photonics one of the leading technologies used to build biosensors for diagnostic applications. Here we introduce a new silicon dioxide based optofluidic platform having a planar solid-core (SC) waveguide orthogonally intersecting a liquid-core (LC) waveguide with high refractive index ZnI2 salt solution as core. This enables both more uniform collection of particle fluorescence by the core mode and its propagation to an off-chip detector. This approach results in ultra-high sensitivity performance, demonstrated by achieving 8X enhancement in signal-to-noise ratio, a 45x increase in detection efficiency, and a 100x lower detection limit of 80 aM of fluorescent nanobeads. This represents a key step towards an ultrasensitive biosensor system for analyzing pathogens at clinical concentrations.
高灵敏度以及易于与微制造技术集成,使得硅光子学成为用于构建诊断应用生物传感器的领先技术之一。在此,我们介绍一种新型的基于二氧化硅的光流体平台,该平台具有一个平面固体芯(SC)波导,它与一个以高折射率ZnI₂盐溶液为芯的液芯(LC)波导正交相交。这既能够通过芯模更均匀地收集粒子荧光,又能将其传播到片外探测器。这种方法实现了超高灵敏度性能,通过实现信噪比提高8倍、检测效率提高45倍以及荧光纳米珠检测限低至80 aM(降低100倍)得以证明。这代表着朝着用于分析临床浓度病原体的超灵敏生物传感器系统迈出了关键一步。