Suppr超能文献

开发用于糖尿病患者的基于生理的群体药代动力学模型及其在理解疾病-药物-药物相互作用中的应用。

Development of a Physiologically Based Pharmacokinetic Population Model for Diabetic Patients and its Application to Understand Disease-drug-drug Interactions.

机构信息

Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.

出版信息

Clin Pharmacokinet. 2024 Jun;63(6):831-845. doi: 10.1007/s40262-024-01383-2. Epub 2024 May 31.

Abstract

INTRODUCTION

The activity changes of cytochrome P450 (CYP450) enzymes, along with the complicated medication scenarios in diabetes mellitus (DM) patients, result in the unanticipated pharmacokinetics (PK), pharmacodynamics (PD), and drug-drug interactions (DDIs). Physiologically based pharmacokinetic (PBPK) modeling has been a useful tool for assessing the influence of disease status on CYP enzymes and the resulting DDIs. This work aims to develop a novel diabetic PBPK population model to facilitate the prediction of PK and DDI in DM patients.

METHODS

First, mathematical functions were constructed to describe the demographic and non-CYP physiological characteristics specific to DM, which were then incorporated into the PBPK model to quantify the net changes in CYP enzyme activities by comparing the PK of CYP probe drugs in DM versus non-DM subjects.

RESULTS

The results show that the enzyme activity is reduced by 32.3% for CYP3A4/5, 39.1% for CYP2C19, and 27% for CYP2B6, while CYP2C9 activity is enhanced by 38% under DM condition. Finally, the diabetic PBPK model was developed through integrating the DM-specific CYP activities and other parameters and was further used to perform PK simulations under 12 drug combination scenarios, among which 3 combinations were predicted to result in significant PK changes in DM, which may cause DDI risks in DM patients.

CONCLUSIONS

The PBPK modeling applied herein provides a quantitative tool to assess the impact of disease factors on relevant enzyme pathways and potential disease-drug-drug-interactions (DDDIs), which may be useful for dosing regimen optimization and minimizing the DDI risks associated with the treatment of DM.

摘要

简介

细胞色素 P450(CYP450)酶的活性变化,加上糖尿病(DM)患者复杂的用药情况,导致不可预测的药代动力学(PK)、药效动力学(PD)和药物-药物相互作用(DDI)。基于生理学的药代动力学(PBPK)建模已成为评估疾病状态对 CYP 酶的影响以及由此产生的 DDI 的有用工具。这项工作旨在开发一种新的糖尿病 PBPK 群体模型,以促进对 DM 患者 PK 和 DDI 的预测。

方法

首先,构建了数学函数来描述 DM 特有的人口统计学和非 CYP 生理特征,然后将其纳入 PBPK 模型,通过比较 DM 与非 DM 受试者中 CYP 探针药物的 PK,定量 CYP 酶活性的净变化。

结果

结果表明,在 DM 条件下,CYP3A4/5 的酶活性降低 32.3%,CYP2C19 的酶活性降低 39.1%,CYP2B6 的酶活性降低 27%,而 CYP2C9 的酶活性增强 38%。最后,通过整合 DM 特有的 CYP 活性和其他参数,开发了糖尿病 PBPK 模型,并进一步用于在 12 种药物联合方案下进行 PK 模拟,其中 3 种联合方案预测在 DM 中会导致 PK 发生显著变化,这可能会导致 DM 患者发生 DDI 风险。

结论

本文应用的 PBPK 建模提供了一种定量工具,可用于评估疾病因素对相关酶途径和潜在疾病-药物-药物相互作用(DDI)的影响,这可能有助于优化剂量方案并最大程度地降低与 DM 治疗相关的 DDI 风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验