Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands.
University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):29930-29945. doi: 10.1021/acsami.4c05864. Epub 2024 May 31.
The inherent extracellular matrix (ECM) originating from a specific tissue impacts the process of vascularization, specifically vascular network formation (VNF) orchestrated by endothelial cells (ECs). The specific contribution toward these processes of ECM from highly disparate organs such as the skin and lungs remains a relatively unexplored area. In this study, we compared VNF and ECM remodeling mediated by microvascular ECs within gel, lung, and combinations thereof (hybrid) ECM hydrogels. Irrespective of the EC source, the skin-derived ECM hydrogel exhibited a higher propensity to drive and support VNF compared to both lung and hybrid ECM hydrogels. There were distinct disparities in the physical properties of the three types of hydrogels, including viscoelastic properties and complex architectural configurations, including fiber diameter, pore area, and numbers among the fibers. The hybrid ECM hydrogel properties were unique and not the sum of the component ECM parts. Furthermore, cellular ECM remodeling responses varied with skin ECM hydrogels promoting matrix metalloproteinase 1 (MMP1) secretion, while hybrid ECM hydrogels exhibited increased MMP9, fibronectin, and collagen IV deposition. Principal component analysis (PCA) indicated that the influence of a gel's mechanical properties on VNF was stronger than the biochemical composition. These data indicate that the organ-specific properties of an ECM dictate its capacity to support VNF, while intriguingly showing that ECs respond to more than just the biochemical constituents of an ECM. The study suggests potential applications in regenerative medicine by strategically selecting ECM origin or combinations to manipulate vascularization, offering promising prospects for enhancing wound healing through pro-regenerative interventions.
源自特定组织的固有细胞外基质(ECM)会影响血管生成过程,特别是内皮细胞(EC)协调的血管网络形成(VNF)。皮肤和肺等高度不同的器官来源的 ECM 对这些过程的具体贡献仍然是一个相对未探索的领域。在这项研究中,我们比较了微脉管 EC 在凝胶、肺和它们的组合(混合)ECM 水凝胶中介导的 VNF 和 ECM 重塑。无论 EC 的来源如何,与肺和混合 ECM 水凝胶相比,皮肤衍生的 ECM 水凝胶表现出更高的驱动和支持 VNF 的倾向。三种水凝胶的物理性质存在明显差异,包括粘弹性和复杂的建筑结构,包括纤维直径、孔面积和纤维之间的数量。混合 ECM 水凝胶的性质是独特的,而不是组成 ECM 部分的总和。此外,细胞 ECM 重塑反应随皮肤 ECM 水凝胶而变化,促进基质金属蛋白酶 1(MMP1)的分泌,而混合 ECM 水凝胶则表现出增加的 MMP9、纤维连接蛋白和胶原蛋白 IV 的沉积。主成分分析(PCA)表明凝胶机械性能对 VNF 的影响强于生化组成。这些数据表明,ECM 的器官特异性特性决定了其支持 VNF 的能力,同时有趣的是表明 EC 对 ECM 的生化成分的反应不仅仅是这些。该研究通过策略性地选择 ECM 来源或组合来操纵血管生成,为通过促进再生的干预措施增强伤口愈合提供了有希望的前景,从而表明其在再生医学中的潜在应用。