Suppr超能文献

S2VQ-VAE:用于 Trail Making Test 自动评估的半监督向量量化-变分自动编码器。

S2VQ-VAE: Semi-Supervised Vector Quantised-Variational AutoEncoder for Automatic Evaluation of Trail Making Test.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4456-4470. doi: 10.1109/JBHI.2024.3407881. Epub 2024 Aug 6.

Abstract

BACKGROUND

Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices.

METHODOLOGY

In this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community.

RESULTS

The experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance.

CONCLUSIONS

In conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.

摘要

背景

计算机辅助认知障碍检测受到越来越多的关注,为社区中的老年人提供了更多使用数字设备上的多模态传感技术进行更客观、更生态有效和更方便的认知评估的机会。

方法

在这项研究中,我们旨在基于纸质和电子 TMT 开发一种用于筛查认知障碍的自动化方法。我们提出了一种名为半监督向量量化变分自动编码器 (S2VQ-VAE) 的新的深度表示学习方法。在 S2VQ-VAE 中,我们结合了内类和类间相关损失来分离与类相关的因素。然后,将这些因素与各种实时可获得的特征(包括人口统计学、时间相关、压力相关和急动度相关特征)相结合,创建一个强大的特征工程模块。最后,我们确定轻梯度提升机是最优的分类器。实验是在从社区中老年人收集的数据集上进行的。

结果

实验结果表明,所提出的多类型特征融合方法在筛查性能方面优于传统的纸质 TMT 方法和现有的基于 VAE 的特征提取方法。

结论

总之,所提出的深度表示学习方法显著提高了基于行为的 TMT 的认知诊断能力,并简化了大规模的基于社区的认知障碍筛查,同时减少了专业医疗保健人员的工作量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验