University of Victoria, 800 Finnerty Road, Victoria, V8P 5C2, BC, Canada; Cognia AI, 2031 Store street, Victoria, V8T 5L9, BC, Canada.
Comput Methods Programs Biomed. 2024 Aug;253:108231. doi: 10.1016/j.cmpb.2024.108231. Epub 2024 May 27.
BACKGROUND AND OBJECTIVE: Uncertainty quantification is a pivotal field that contributes to realizing reliable and robust systems. It becomes instrumental in fortifying safe decisions by providing complementary information, particularly within high-risk applications. existing studies have explored various methods that often operate under specific assumptions or necessitate substantial modifications to the network architecture to effectively account for uncertainties. The objective of this paper is to study Conformal Prediction, an emerging distribution-free uncertainty quantification technique, and provide a comprehensive understanding of the advantages and limitations inherent in various methods within the medical imaging field. METHODS: In this study, we developed Conformal Prediction, Monte Carlo Dropout, and Evidential Deep Learning approaches to assess uncertainty quantification in deep neural networks. The effectiveness of these methods is evaluated using three public medical imaging datasets focused on detecting pigmented skin lesions and blood cell types. RESULTS: The experimental results demonstrate a significant enhancement in uncertainty quantification with the utilization of the Conformal Prediction method, surpassing the performance of the other two methods. Furthermore, the results present insights into the effectiveness of each uncertainty method in handling Out-of-Distribution samples from domain-shifted datasets. Our code is available at: github.com/jfayyad/ConformalDx. CONCLUSIONS: Our conclusion highlights a robust and consistent performance of conformal prediction across diverse testing conditions. This positions it as the preferred choice for decision-making in safety-critical applications.
背景与目的:不确定性量化是一个至关重要的领域,有助于实现可靠和稳健的系统。它通过提供补充信息,特别是在高风险应用中,为做出安全决策提供了有力支持。现有研究已经探索了各种方法,这些方法通常基于特定假设或需要对网络架构进行大量修改,以便有效地考虑不确定性。本文的目的是研究一致性预测,这是一种新兴的无分布不确定性量化技术,并全面了解医学成像领域各种方法的优点和局限性。
方法:在这项研究中,我们开发了一致性预测、蒙特卡罗辍学和证据深度学习方法,以评估深度神经网络中的不确定性量化。使用三个专注于检测色素性皮肤病变和血细胞类型的公共医学成像数据集来评估这些方法的有效性。
结果:实验结果表明,利用一致性预测方法可以显著提高不确定性量化的效果,优于其他两种方法的性能。此外,结果还提供了关于每种不确定性方法在处理来自域转移数据集的离群样本方面的有效性的见解。我们的代码可在 github.com/jfayyad/ConformalDx 上获得。
结论:我们的结论强调了一致性预测在各种测试条件下具有强大而一致的性能。这使其成为安全关键应用中决策的首选方法。
Comput Methods Programs Biomed. 2024-8
Comput Biol Med. 2022-5
J Imaging Inform Med. 2025-6
J Chem Inf Model. 2021-6-28
Neural Netw. 2021-12