文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经验验证可信皮肤病变分类的共形预测。

Empirical validation of Conformal Prediction for trustworthy skin lesions classification.

机构信息

University of Victoria, 800 Finnerty Road, Victoria, V8P 5C2, BC, Canada; Cognia AI, 2031 Store street, Victoria, V8T 5L9, BC, Canada.

出版信息

Comput Methods Programs Biomed. 2024 Aug;253:108231. doi: 10.1016/j.cmpb.2024.108231. Epub 2024 May 27.


DOI:10.1016/j.cmpb.2024.108231
PMID:38820714
Abstract

BACKGROUND AND OBJECTIVE: Uncertainty quantification is a pivotal field that contributes to realizing reliable and robust systems. It becomes instrumental in fortifying safe decisions by providing complementary information, particularly within high-risk applications. existing studies have explored various methods that often operate under specific assumptions or necessitate substantial modifications to the network architecture to effectively account for uncertainties. The objective of this paper is to study Conformal Prediction, an emerging distribution-free uncertainty quantification technique, and provide a comprehensive understanding of the advantages and limitations inherent in various methods within the medical imaging field. METHODS: In this study, we developed Conformal Prediction, Monte Carlo Dropout, and Evidential Deep Learning approaches to assess uncertainty quantification in deep neural networks. The effectiveness of these methods is evaluated using three public medical imaging datasets focused on detecting pigmented skin lesions and blood cell types. RESULTS: The experimental results demonstrate a significant enhancement in uncertainty quantification with the utilization of the Conformal Prediction method, surpassing the performance of the other two methods. Furthermore, the results present insights into the effectiveness of each uncertainty method in handling Out-of-Distribution samples from domain-shifted datasets. Our code is available at: github.com/jfayyad/ConformalDx. CONCLUSIONS: Our conclusion highlights a robust and consistent performance of conformal prediction across diverse testing conditions. This positions it as the preferred choice for decision-making in safety-critical applications.

摘要

背景与目的:不确定性量化是一个至关重要的领域,有助于实现可靠和稳健的系统。它通过提供补充信息,特别是在高风险应用中,为做出安全决策提供了有力支持。现有研究已经探索了各种方法,这些方法通常基于特定假设或需要对网络架构进行大量修改,以便有效地考虑不确定性。本文的目的是研究一致性预测,这是一种新兴的无分布不确定性量化技术,并全面了解医学成像领域各种方法的优点和局限性。

方法:在这项研究中,我们开发了一致性预测、蒙特卡罗辍学和证据深度学习方法,以评估深度神经网络中的不确定性量化。使用三个专注于检测色素性皮肤病变和血细胞类型的公共医学成像数据集来评估这些方法的有效性。

结果:实验结果表明,利用一致性预测方法可以显著提高不确定性量化的效果,优于其他两种方法的性能。此外,结果还提供了关于每种不确定性方法在处理来自域转移数据集的离群样本方面的有效性的见解。我们的代码可在 github.com/jfayyad/ConformalDx 上获得。

结论:我们的结论强调了一致性预测在各种测试条件下具有强大而一致的性能。这使其成为安全关键应用中决策的首选方法。

相似文献

[1]
Empirical validation of Conformal Prediction for trustworthy skin lesions classification.

Comput Methods Programs Biomed. 2024-8

[2]
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

Comput Biol Med. 2021-8

[3]
Uncertainty-aware skin cancer detection: The element of doubt.

Comput Biol Med. 2022-5

[4]
Uncertainty quantification for probabilistic machine learning in earth observation using conformal prediction.

Sci Rep. 2024-7-13

[5]
DM-CNN: Dynamic Multi-scale Convolutional Neural Network with uncertainty quantification for medical image classification.

Comput Biol Med. 2024-1

[6]
Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification.

J Imaging Inform Med. 2025-6

[7]
Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals.

Sensors (Basel). 2020-5-27

[8]
Reliable prediction intervals with directly optimized inductive conformal regression for deep learning.

Neural Netw. 2023-11

[9]
Deep Learning-Based Conformal Prediction of Toxicity.

J Chem Inf Model. 2021-6-28

[10]
Uncertainty propagation for dropout-based Bayesian neural networks.

Neural Netw. 2021-12

引用本文的文献

[1]
Dual scale light weight cross attention transformer for skin lesion classification.

PLoS One. 2024-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索