文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于三向决策贝叶斯深度学习的皮肤癌分类中的不确定性量化。

Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

机构信息

Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia.

Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

出版信息

Comput Biol Med. 2021 Aug;135:104418. doi: 10.1016/j.compbiomed.2021.104418. Epub 2021 Apr 28.


DOI:10.1016/j.compbiomed.2021.104418
PMID:34052016
Abstract

Accurate automated medical image recognition, including classification and segmentation, is one of the most challenging tasks in medical image analysis. Recently, deep learning methods have achieved remarkable success in medical image classification and segmentation, clearly becoming the state-of-the-art methods. However, most of these methods are unable to provide uncertainty quantification (UQ) for their output, often being overconfident, which can lead to disastrous consequences. Bayesian Deep Learning (BDL) methods can be used to quantify uncertainty of traditional deep learning methods, and thus address this issue. We apply three uncertainty quantification methods to deal with uncertainty during skin cancer image classification. They are as follows: Monte Carlo (MC) dropout, Ensemble MC (EMC) dropout and Deep Ensemble (DE). To further resolve the remaining uncertainty after applying the MC, EMC and DE methods, we describe a novel hybrid dynamic BDL model, taking into account uncertainty, based on the Three-Way Decision (TWD) theory. The proposed dynamic model enables us to use different UQ methods and different deep neural networks in distinct classification phases. So, the elements of each phase can be adjusted according to the dataset under consideration. In this study, two best UQ methods (i.e., DE and EMC) are applied in two classification phases (the first and second phases) to analyze two well-known skin cancer datasets, preventing one from making overconfident decisions when it comes to diagnosing the disease. The accuracy and the F1-score of our final solution are, respectively, 88.95% and 89.00% for the first dataset, and 90.96% and 91.00% for the second dataset. Our results suggest that the proposed TWDBDL model can be used effectively at different stages of medical image analysis.

摘要

准确的自动化医学图像识别,包括分类和分割,是医学图像分析中最具挑战性的任务之一。最近,深度学习方法在医学图像分类和分割方面取得了显著的成功,已成为当前最先进的方法。然而,这些方法大多无法为其输出提供不确定性量化(UQ),往往过于自信,这可能导致灾难性的后果。贝叶斯深度学习(BDL)方法可用于量化传统深度学习方法的不确定性,从而解决这个问题。我们应用了三种不确定性量化方法来处理皮肤癌图像分类中的不确定性。它们是:蒙特卡罗(MC)dropout、集成 MC(EMC)dropout 和深度集成(DE)。为了进一步解决 MC、EMC 和 DE 方法应用后剩余的不确定性,我们根据三进制决策(TWD)理论,描述了一种新的混合动态 BDL 模型,考虑不确定性。所提出的动态模型使我们能够在不同的分类阶段使用不同的 UQ 方法和不同的深度神经网络。因此,每个阶段的元素可以根据所考虑的数据集进行调整。在这项研究中,我们将两种最佳的 UQ 方法(即 DE 和 EMC)应用于两个分类阶段(第一阶段和第二阶段),分析两个著名的皮肤癌数据集,以防止在诊断疾病时做出过于自信的决策。我们最终解决方案的准确率和 F1 分数分别为第一个数据集的 88.95%和 89.00%,第二个数据集的 90.96%和 91.00%。我们的结果表明,所提出的 TWDBDL 模型可以在医学图像分析的不同阶段有效地使用。

相似文献

[1]
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

Comput Biol Med. 2021-8

[2]
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.

BMC Med Imaging. 2023-10-19

[3]
Uncertainty quantification in multi-class image classification using chest X-ray images of COVID-19 and pneumonia.

Front Artif Intell. 2024-9-18

[4]
Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images.

J Biomed Opt. 2022-11

[5]
Data-efficient Bayesian learning for radial dynamic MR reconstruction.

Med Phys. 2023-11

[6]
Uncertainty-aware image classification on 3D CT lung.

Comput Biol Med. 2024-4

[7]
Uncertainty quantification in multi-class segmentation: Comparison between Bayesian and non-Bayesian approaches in a clinical perspective.

Med Phys. 2024-9

[8]
Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control.

Neuroimage. 2019-3-26

[9]
Uncertainty quantification via localized gradients for deep learning-based medical image assessments.

Phys Med Biol. 2024-7-19

[10]
Bayesian Convolutional Neural Networks in Medical Imaging Classification: A Promising Solution for Deep Learning Limits in Data Scarcity Scenarios.

J Digit Imaging. 2023-12

引用本文的文献

[1]
The Bayesian mixture expert recognition model for tobacco leaf curing stages based on feature fusion.

Plant Methods. 2025-6-16

[2]
Robust Uncertainty-Informed Glaucoma Classification Under Data Shift.

Transl Vis Sci Technol. 2025-6-2

[3]
Artificial intelligence to enhance the diagnosis of ocular surface squamous neoplasia.

Sci Rep. 2025-3-20

[4]
A hybrid fused-KNN based intelligent model to access melanoma disease risk using indoor positioning system.

Sci Rep. 2025-3-3

[5]
AI in dermatology: a comprehensive review into skin cancer detection.

PeerJ Comput Sci. 2024-12-5

[6]
The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems.

J Pers Med. 2024-12-28

[7]
Deep learning-based skin lesion analysis using hybrid ResUNet++ and modified AlexNet-Random Forest for enhanced segmentation and classification.

PLoS One. 2025-1-16

[8]
Transforming Cancer Classification: The Role of Advanced Gene Selection.

Diagnostics (Basel). 2024-11-22

[9]
Integrating artificial intelligence with smartphone-based imaging for cancer detection in vivo.

Biosens Bioelectron. 2025-3-1

[10]
Uncertainty quantification in multi-class image classification using chest X-ray images of COVID-19 and pneumonia.

Front Artif Intell. 2024-9-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索