Suppr超能文献

深度共形监督:利用中间特征进行稳健的不确定性量化。

Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification.

作者信息

Vahdani Amir M, Faghani Shahriar

机构信息

Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran.

Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN, USA.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1860-1870. doi: 10.1007/s10278-024-01286-5. Epub 2024 Oct 7.

Abstract

Trustworthiness is crucial for artificial intelligence (AI) models in clinical settings, and a fundamental aspect of trustworthy AI is uncertainty quantification (UQ). Conformal prediction as a robust uncertainty quantification (UQ) framework has been receiving increasing attention as a valuable tool in improving model trustworthiness. An area of active research is the method of non-conformity score calculation for conformal prediction. We propose deep conformal supervision (DCS), which leverages the intermediate outputs of deep supervision for non-conformity score calculation, via weighted averaging based on the inverse of mean calibration error for each stage. We benchmarked our method on two publicly available datasets focused on medical image classification: a pneumonia chest radiography dataset and a preprocessed version of the 2019 RSNA Intracranial Hemorrhage dataset. Our method achieved mean coverage errors of 16e-4 (CI: 1e-4, 41e-4) and 5e-4 (CI: 1e-4, 10e-4) compared to baseline mean coverage errors of 28e-4 (CI: 2e-4, 64e-4) and 21e-4 (CI: 8e-4, 3e-4) on the two datasets, respectively (p < 0.001 on both datasets). Based on our findings, the baseline results of conformal prediction already exhibit small coverage errors. However, our method shows a significant improvement on coverage error, particularly noticeable in scenarios involving smaller datasets or when considering smaller acceptable error levels, which are crucial in developing UQ frameworks for healthcare AI applications.

摘要

在临床环境中,可信度对于人工智能(AI)模型至关重要,而可信AI的一个基本方面是不确定性量化(UQ)。共形预测作为一种强大的不确定性量化(UQ)框架,作为提高模型可信度的宝贵工具,受到了越来越多的关注。一个活跃的研究领域是共形预测的非一致性分数计算方法。我们提出了深度共形监督(DCS),它通过基于每个阶段平均校准误差倒数的加权平均,利用深度监督的中间输出进行非一致性分数计算。我们在两个专注于医学图像分类的公开可用数据集上对我们的方法进行了基准测试:一个肺炎胸部X光数据集和2019年RSNA颅内出血数据集的预处理版本。与两个数据集上的基线平均覆盖误差分别为28e - 4(CI:2e - 4,64e - 4)和21e - 4(CI:8e - 4,3e - 4)相比,我们的方法分别实现了16e - 4(CI:1e - 4,41e - 4)和5e - 4(CI:1e - 4,10e - 4)的平均覆盖误差(两个数据集上p均<0.001)。基于我们的研究结果来看,共形预测的基线结果已经显示出较小的覆盖误差。然而,我们的方法在覆盖误差方面有显著改进,在涉及较小数据集的场景中或考虑较小可接受误差水平时尤为明显,这对于开发医疗保健AI应用的UQ框架至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验