Suppr超能文献

通过界面能量转移,在925纳米和1022纳米处实现最大化的高性能近红外有机发光二极管。

High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer.

作者信息

Hung Chieh-Ming, Wang Sheng-Fu, Chao Wei-Chih, Li Jian-Liang, Chen Bo-Han, Lu Chih-Hsuan, Tu Kai-Yen, Yang Shang-Da, Hung Wen-Yi, Chi Yun, Chou Pi-Tai

机构信息

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

Nat Commun. 2024 May 31;15(1):4664. doi: 10.1038/s41467-024-49127-x.

Abstract

Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr m. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.

摘要

我们采用转移印刷技术,将一层指定的近红外荧光染料BTP-eC9压印在一层Pt(II)配合物薄层上,这两种物质都能够进行自组装。在整合之前,Pt(II)配合物层发出强烈的深红色磷光,在~740 nm处达到最大值,而BTP-eC9层在> 900 nm处显示荧光。在压印双层结构下制造的有机发光二极管收集了大部分Pt(II)配合物的磷光,其经历从三重态到单重态的能量转移到BTP-eC9染料上,从而在> 900 nm处产生高强度的超荧光。结果,器件实现了925 nm的发射,外部量子效率为2.24%(1.94 ± 0.18%),最大辐射亮度为39.97 W sr m。综合的形态学、光谱学和器件分析支持了界面能量转移的机制,这对于BTPV-eC9染料(1022 nm)也被证明是成功的,这使得近红外区域超荧光有机发光二极管的前景光明且影响深远。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc00/11143248/57c6927e93cd/41467_2024_49127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验