Department of Cardiology, Rutgers Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick, New Jersey, USA; Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
Department of Cardiology, Rutgers Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick, New Jersey, USA.
Can J Cardiol. 2024 Oct;40(10):1950-1958. doi: 10.1016/j.cjca.2024.05.022. Epub 2024 May 31.
Large language models (LLMs) are a unique form of machine learning that facilitates inputs of unstructured text/numerical information for meaningful interpretation and prediction. Recently, LLMs have become commercialized, allowing the average person to access these incredibly powerful tools. Early adopters focused on LLM use in performing logical tasks, including-but not limited to-generating titles, identifying key words, summarizing text, initial editing of scientific work, improving statistical protocols, and performing statistical analysis. More recently, LLMs have been expanded to clinical practice and academia to perform higher cognitive and creative tasks. LLMs provide personalized assistance in learning, facilitate the management of electronic medical records, and offer valuable insights into clinical decision making in cardiology. They enhance patient education by explaining intricate medical conditions in lay terms, have a vast library of knowledge to help clinicians expedite administrative tasks, provide useful feedback regarding content of scientific writing, and assist in the peer-review process. Despite their impressive capabilities, LLMs are not without limitations. They are susceptible to generating incorrect or plagiarized content, face challenges in handling tasks without detailed prompts, and lack originality. These limitations underscore the importance of human oversight in using LLMs in medical science and clinical practice. As LLMs continue to evolve, addressing these challenges will be crucial in maximizing their potential benefits while mitigating risks. This review explores the functions, opportunities, and constraints of LLMs, with a focus on their impact on cardiology, illustrating both the transformative power and the boundaries of current technology in medicine.
大型语言模型(LLMs)是一种独特的机器学习形式,它可以对非结构化的文本/数值信息进行输入,以便进行有意义的解释和预测。最近,LLMs 已经商业化,允许普通人访问这些功能强大的工具。早期的采用者专注于使用 LLM 执行逻辑任务,包括但不限于生成标题、识别关键词、总结文本、初步编辑科学工作、改进统计协议以及执行统计分析。最近,LLMs 已经扩展到临床实践和学术界,以执行更高层次的认知和创造性任务。LLMs 为学习提供个性化的帮助,方便电子病历的管理,并为心脏病学的临床决策提供有价值的见解。它们通过用通俗易懂的语言解释复杂的医学状况来增强患者教育,拥有丰富的知识库,帮助临床医生快速完成行政任务,提供有关科学写作内容的有用反馈,并协助同行评审过程。尽管它们功能强大,但 LLM 也并非没有限制。它们容易生成错误或抄袭的内容,在没有详细提示的情况下处理任务时会遇到挑战,并且缺乏原创性。这些限制突显了在医学科学和临床实践中使用 LLM 时进行人工监督的重要性。随着 LLM 的不断发展,解决这些挑战将是充分发挥其潜在优势并降低风险的关键。本综述探讨了 LLM 的功能、机会和限制,重点介绍了它们对心脏病学的影响,说明了当前医学技术的变革力量和局限性。