College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China.
Sci Rep. 2024 Jun 1;14(1):12601. doi: 10.1038/s41598-024-63292-5.
Data categorization is a top concern in medical data to predict and detect illnesses; thus, it is applied in modern healthcare informatics. In modern informatics, machine learning and deep learning models have enjoyed great attention for categorizing medical data and improving illness detection. However, the existing techniques, such as features with high dimensionality, computational complexity, and long-term execution duration, raise fundamental problems. This study presents a novel classification model employing metaheuristic methods to maximize efficient positives on Chronic Kidney Disease diagnosis. The medical data is initially massively pre-processed, where the data is purified with various mechanisms, including missing values resolution, data transformation, and the employment of normalization procedures. The focus of such processes is to leverage the handling of the missing values and prepare the data for deep analysis. We adopt the Binary Grey Wolf Optimization method, a reliable subset selection feature using metaheuristics. This operation is aimed at improving illness prediction accuracy. In the classification step, the model adopts the Extreme Learning Machine with hidden nodes through data optimization to predict the presence of CKD. The complete classifier evaluation employs established measures, including recall, specificity, kappa, F-score, and accuracy, in addition to the feature selection. Data related to the study show that the proposed approach records high levels of accuracy, which is better than the existing models.
数据分类是医学数据中预测和检测疾病的首要关注点;因此,它被应用于现代医疗保健信息学中。在现代信息学中,机器学习和深度学习模型因其对医学数据的分类和疾病检测的改进而受到极大关注。然而,现有的技术,如高维特征、计算复杂性和长期执行时间等,带来了一些根本问题。本研究提出了一种新颖的分类模型,采用启发式方法最大限度地提高慢性肾脏病诊断的有效阳性率。首先对医学数据进行大规模预处理,使用包括缺失值解析、数据转换和标准化程序在内的各种机制对数据进行净化。这些过程的重点是利用缺失值的处理并为深入分析做好数据准备。我们采用了二进制灰狼优化方法,这是一种可靠的使用启发式算法的子集选择特征。该操作旨在提高疾病预测的准确性。在分类步骤中,模型通过数据优化采用具有隐藏节点的极限学习机来预测 CKD 的存在。完整的分类器评估采用了包括召回率、特异性、kappa、F 分数和准确性在内的既定措施,以及特征选择。与研究相关的数据表明,所提出的方法记录了较高的准确率,优于现有的模型。