Suppr超能文献

通过纳米抗体连接实现 GPCR 配体的高度偏向激动作用。

Highly biased agonism for GPCR ligands via nanobody tethering.

机构信息

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA.

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Commun. 2024 Jun 1;15(1):4687. doi: 10.1038/s41467-024-49068-5.

Abstract

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.

摘要

配体诱导的 G 蛋白偶联受体 (GPCR) 的激活可以通过多种不同的途径启动信号转导,从而产生不同的生物学和生理学结果。人们强烈关注如何利用 GPCR 配体结构的差异来促进具有特定信号通路选择性的信号转导(“偏向激动剂”),以促进理想的反应并避免有害的副作用。在这里,我们提出了一种方法,即将一种用于甲状旁腺激素受体 1 (PTHR1) 的传统肽配体从一种诱导所有相关信号通路的激动剂转换为一种对单一信号通路具有高度选择性的化合物。这不是通过改变激动剂的核心结构来实现的,而是通过将其连接到一个纳米抗体连接剂上,该连接剂与受体上不参与信号转导的另一个单独结合位点具有高亲和力。由此产生的缀合物代表了迄今为止报道的 PTHR1 最具偏向性的激动剂。这种方法有望为其他 GPCR 易于生成具有特定信号通路选择性的配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ad4/11144202/17bbbf65dbeb/41467_2024_49068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验