Suppr超能文献

用于阐明纳米抗体 - 肽表位相互作用的AlphaFold建模评估。

Evaluation of AlphaFold modeling for elucidation of nanobody-peptide epitope interactions.

作者信息

Sachdev Shivani, Roy Swarnali, Saha Shubhra J, Zhao Gengxiang, Kumariya Rashmi, Creemer Brendan A, Yin Rui, Pierce Brian G, Bewley Carole A, Cheloha Ross W

机构信息

Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, Bethesda, Maryland, USA.

University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.

出版信息

J Biol Chem. 2025 May 21;301(7):110268. doi: 10.1016/j.jbc.2025.110268.

Abstract

Models of antibody (Ab)-antigen complexes can be used to understand interaction mechanisms and for improving affinity. This study evaluates the use of the protein structure prediction algorithm AlphaFold (AF) for exploration of interactions between peptide epitope tags and the smallest functional Ab fragments, nanobodies (Nbs). Although past studies of AF for modeling Ab-target (antigen) interactions suggested modest algorithm performance, those were primarily focused on Ab-protein interactions, while the performance and utility of AF for Nb-peptide interactions, which are generally less complex because of smaller antigens, smaller binding domains, and fewer chains, is less clear. In this study, we evaluated the performance of AF for predicting the structures of Nbs bound to experimentally validated, linear, short peptide epitopes (Nb-tag pairs). We expanded the pool of experimental data available for comparison through crystallization and structural determination of a previously reported Nb-tag complex (Nb). Models of Nb-tag pair structures generated from AF were variable with respect to consistency with experimental data, with good performance in just over half (four of six) of cases. Even among Nb-tag pairs successfully modeled in isolation, efforts to translate modeling to more complex contexts failed, suggesting an underappreciated role of the size and complexity of inputs in AF modeling success. Finally, the model of an Nb-tag pair with minimal previous characterization was used to guide the design of a peptide-electrophile conjugate that undergoes covalent crosslinking with Nb upon binding. These findings highlight the utility of minimized Ab and antigen structures to maximize insights from AF modeling.

摘要

抗体(Ab)-抗原复合物模型可用于理解相互作用机制并提高亲和力。本研究评估了蛋白质结构预测算法AlphaFold(AF)在探索肽表位标签与最小功能性Ab片段纳米抗体(Nbs)之间相互作用方面的应用。尽管过去关于AF用于模拟Ab-靶标(抗原)相互作用的研究表明算法性能一般,但这些研究主要集中在Ab-蛋白质相互作用上,而AF用于Nb-肽相互作用的性能和实用性尚不清楚,因为Nb-肽相互作用通常由于抗原较小、结合域较小和链较少而不太复杂。在本研究中,我们评估了AF预测与经实验验证的线性短肽表位结合的Nbs结构(Nb-标签对)的性能。我们通过对先前报道的Nb-标签复合物(Nb)进行结晶和结构测定,扩大了可用于比较的实验数据池。由AF生成的Nb-标签对结构模型在与实验数据的一致性方面存在差异,略多于一半(六个中的四个)的案例表现良好。即使在单独成功建模的Nb-标签对中,将建模转化为更复杂背景的努力也失败了,这表明输入的大小和复杂性在AF建模成功中所起的作用未得到充分重视。最后,利用一个此前表征最少的Nb-标签对模型来指导一种肽-亲电试剂缀合物的设计,该缀合物在结合时会与Nb发生共价交联。这些发现突出了最小化的Ab和抗原结构在最大化AF建模洞察力方面的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61f6/12212259/70aff7ed595c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验