口腔牙科精细结构人体模型及实例牙齿分割。
Fine structural human phantom in dentistry and instance tooth segmentation.
机构信息
Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
出版信息
Sci Rep. 2024 Jun 2;14(1):12630. doi: 10.1038/s41598-024-63319-x.
In this study, we present the development of a fine structural human phantom designed specifically for applications in dentistry. This research focused on assessing the viability of applying medical computer vision techniques to the task of segmenting individual teeth within a phantom. Using a virtual cone-beam computed tomography (CBCT) system, we generated over 170,000 training datasets. These datasets were produced by varying the elemental densities and tooth sizes within the human phantom, as well as varying the X-ray spectrum, noise intensity, and projection cutoff intensity in the virtual CBCT system. The deep-learning (DL) based tooth segmentation model was trained using the generated datasets. The results demonstrate an agreement with manual contouring when applied to clinical CBCT data. Specifically, the Dice similarity coefficient exceeded 0.87, indicating the robust performance of the developed segmentation model even when virtual imaging was used. The present results show the practical utility of virtual imaging techniques in dentistry and highlight the potential of medical computer vision for enhancing precision and efficiency in dental imaging processes.
在这项研究中,我们展示了一种专为牙科应用而设计的精细结构人体模型的开发。本研究专注于评估将医学计算机视觉技术应用于在幻影中分割单个牙齿的任务的可行性。使用虚拟锥形束 CT(CBCT)系统,我们生成了超过 170,000 个训练数据集。这些数据集是通过在人体模型中改变元素密度和牙齿大小,以及在虚拟 CBCT 系统中改变 X 射线光谱、噪声强度和投影截止强度来生成的。基于深度学习(DL)的牙齿分割模型使用生成的数据集进行训练。当应用于临床 CBCT 数据时,结果与手动轮廓一致。具体来说,当应用于临床 CBCT 数据时,骰子相似系数超过 0.87,表明即使使用虚拟成像,开发的分割模型也具有稳健的性能。目前的结果表明虚拟成像技术在牙科中的实际应用,并强调了医学计算机视觉在提高牙科成像过程的精度和效率方面的潜力。