School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China.
Department of Computer Science, The University of Hong Kong, Hong Kong, 999077, China.
Nat Commun. 2022 Apr 19;13(1):2096. doi: 10.1038/s41467-022-29637-2.
Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully automatic AI system achieves a segmentation accuracy comparable to experienced radiologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while significant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains accurate results on the challenging cases with variable dental abnormalities, with the average Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry.
从口腔锥形束 CT(CBCT)图像中准确描绘个体牙齿和牙槽骨是精准牙科医疗保健数字化的重要步骤。在本文中,我们提出了一种用于高效、精确和全自动分割真实患者 CBCT 图像的人工智能系统。我们的人工智能系统是在迄今为止最大的数据集上进行评估的,即使用来自 15 个不同中心的 4215 名患者(共 4938 次 CBCT 扫描)的数据集。与经验丰富的放射科医生相比,这个全自动人工智能系统实现了可比的分割准确性(例如,平均骰子相似系数提高了 0.5%),同时显著提高了效率(即快了 500 倍)。此外,它在具有可变牙齿异常的挑战性病例中始终获得准确的结果,牙齿和牙槽骨分割的平均骰子分数分别为 91.5%和 93.0%。这些结果表明,它有潜力成为推动数字化牙科临床工作流程的强大系统。