Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Biophys J. 2024 Jul 2;123(13):1815-1826. doi: 10.1016/j.bpj.2024.05.026. Epub 2024 May 31.
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
生物分子凝聚物在组织细胞化学方面发挥着至关重要的作用。它们能够选择性地分配生物分子,防止不必要的串扰,并缓冲化学噪声。由于其灵活性和参与多价相互作用的能力,导致自发聚集,无规蛋白(IDP)是这些凝聚物的主要成分。理论进展对于将 IDP 序列与凝聚物的新兴特性联系起来,建立所谓的分子语法至关重要。我们提出了对贴纸和间隔物模型的扩展,在间隔物之间包含了不均匀的、非特异性的成对相互作用,以及贴纸之间的特异性相互作用。我们的研究表明,尽管间隔物相互作用有助于相分离和共凝聚,但它们的非特异性导致凝聚物无序。特异性的贴纸-贴纸相互作用驱动具有明确定义的网络结构和分子组成的凝聚物的形成。我们讨论了进化压力如何出现以影响这些相互作用,导致 IDP 序列中低复杂度结构域的普遍存在。这些结构域抑制了虚假相互作用,促进了具有生物学意义的凝聚物的形成。