Suppr超能文献

通过降低序列复杂度来保持冷凝物的结构和组成。

Preserving condensate structure and composition by lowering sequence complexity.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2024 Jul 2;123(13):1815-1826. doi: 10.1016/j.bpj.2024.05.026. Epub 2024 May 31.

Abstract

Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.

摘要

生物分子凝聚物在组织细胞化学方面发挥着至关重要的作用。它们能够选择性地分配生物分子,防止不必要的串扰,并缓冲化学噪声。由于其灵活性和参与多价相互作用的能力,导致自发聚集,无规蛋白(IDP)是这些凝聚物的主要成分。理论进展对于将 IDP 序列与凝聚物的新兴特性联系起来,建立所谓的分子语法至关重要。我们提出了对贴纸和间隔物模型的扩展,在间隔物之间包含了不均匀的、非特异性的成对相互作用,以及贴纸之间的特异性相互作用。我们的研究表明,尽管间隔物相互作用有助于相分离和共凝聚,但它们的非特异性导致凝聚物无序。特异性的贴纸-贴纸相互作用驱动具有明确定义的网络结构和分子组成的凝聚物的形成。我们讨论了进化压力如何出现以影响这些相互作用,导致 IDP 序列中低复杂度结构域的普遍存在。这些结构域抑制了虚假相互作用,促进了具有生物学意义的凝聚物的形成。

相似文献

1
Preserving condensate structure and composition by lowering sequence complexity.
Biophys J. 2024 Jul 2;123(13):1815-1826. doi: 10.1016/j.bpj.2024.05.026. Epub 2024 May 31.
2
Preserving condensate structure and composition by lowering sequence complexity.
bioRxiv. 2023 Nov 29:2023.11.29.569249. doi: 10.1101/2023.11.29.569249.
3
Biomolecular condensates-Prerequisites for anhydrobiosis?
Protein Sci. 2025 Jul;34(7):e70192. doi: 10.1002/pro.70192.
4
Thermal Cycling Resets the Irreversible Liquid-to-Solid Transition of Peptide Condensates during Aging.
ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38696-38707. doi: 10.1021/acsami.5c06248. Epub 2025 Jun 18.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Structural dynamics of IDR interactions in human SFPQ and implications for liquid-liquid phase separation.
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):357-379. doi: 10.1107/S2059798325005303. Epub 2025 Jun 27.
10
Functional specificity in biomolecular condensates revealed by genetic complementation.
Nat Rev Genet. 2025 Apr;26(4):279-290. doi: 10.1038/s41576-024-00780-4. Epub 2024 Oct 21.

引用本文的文献

1
Protein Language Model Identifies Disordered, Conserved Motifs Implicated in Phase Separation.
bioRxiv. 2025 Jul 23:2024.12.12.628175. doi: 10.1101/2024.12.12.628175.
2
Survey of the Aβ-peptide structural diversity: molecular dynamics approaches.
Biophys Rev. 2024 Nov 20;16(6):701-722. doi: 10.1007/s12551-024-01253-y. eCollection 2024 Dec.

本文引用的文献

1
Dynamical phase transition in models that couple chromatin folding with histone modifications.
Phys Rev E. 2024 May;109(5-1):054411. doi: 10.1103/PhysRevE.109.054411.
2
Micropolarity governs the structural organization of biomolecular condensates.
Nat Chem Biol. 2024 Apr;20(4):443-451. doi: 10.1038/s41589-023-01477-1. Epub 2023 Nov 16.
3
Author Correction: Distinct chemical environments in biomolecular condensates.
Nat Chem Biol. 2023 Dec;19(12):1561. doi: 10.1038/s41589-023-01491-3.
5
Molecular Determinants for the Layering and Coarsening of Biological Condensates.
Aggregate (Hoboken). 2022 Dec;3(6). doi: 10.1002/agt2.306. Epub 2022 Dec 10.
6
CD-CODE: crowdsourcing condensate database and encyclopedia.
Nat Methods. 2023 May;20(5):673-676. doi: 10.1038/s41592-023-01831-0. Epub 2023 Apr 6.
7
Phase Transitions of Associative Biomacromolecules.
Chem Rev. 2023 Jul 26;123(14):8945-8987. doi: 10.1021/acs.chemrev.2c00814. Epub 2023 Mar 7.
8
Phase Separation in Biology and Disease; Current Perspectives and Open Questions.
J Mol Biol. 2023 Mar 1;435(5):167971. doi: 10.1016/j.jmb.2023.167971. Epub 2023 Jan 21.
9
Functional partitioning of transcriptional regulators by patterned charge blocks.
Cell. 2023 Jan 19;186(2):327-345.e28. doi: 10.1016/j.cell.2022.12.013. Epub 2023 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验