Suppr超能文献

微极性控制生物分子凝聚物的结构组织。

Micropolarity governs the structural organization of biomolecular condensates.

机构信息

Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China.

Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.

出版信息

Nat Chem Biol. 2024 Apr;20(4):443-451. doi: 10.1038/s41589-023-01477-1. Epub 2023 Nov 16.

Abstract

Membraneless organelles within cells have unique microenvironments that play a critical role in their functions. However, how microenvironments of biomolecular condensates affect their structure and function remains unknown. In this study, we investigated the micropolarity and microviscosity of model biomolecular condensates by fluorescence lifetime imaging coupling with environmentally sensitive fluorophores. Using both in vitro and in cellulo systems, we demonstrated that sufficient micropolarity difference is key to forming multilayered condensates, where the shells present more polar microenvironments than the cores. Furthermore, micropolarity changes were shown to be accompanied by conversions of the layered structures. Decreased micropolarities of the granular components, accompanied by the increased micropolarities of the dense fibrillar components, result in the relocation of different nucleolus subcompartments in transcription-stalled conditions. Our results demonstrate the central role of the previously overlooked micropolarity in the regulation of structures and functions of membraneless organelles.

摘要

细胞内无膜细胞器具有独特的微环境,在其功能中起着关键作用。然而,生物分子凝聚物的微环境如何影响它们的结构和功能尚不清楚。在这项研究中,我们通过荧光寿命成像与环境敏感荧光团相结合,研究了模型生物分子凝聚物的微极性和微粘度。使用体外和细胞内系统,我们证明了足够的微极性差异是形成多层凝聚物的关键,其中壳层呈现出比核心更极性的微环境。此外,还表明微极性的变化伴随着层状结构的转换。颗粒成分的微极性降低,同时致密纤维成分的微极性增加,导致转录停滞条件下不同核仁亚区室的重新定位。我们的结果表明,以前被忽视的微极性在无膜细胞器的结构和功能调节中起着核心作用。

相似文献

1
Micropolarity governs the structural organization of biomolecular condensates.微极性控制生物分子凝聚物的结构组织。
Nat Chem Biol. 2024 Apr;20(4):443-451. doi: 10.1038/s41589-023-01477-1. Epub 2023 Nov 16.
3
Ionic Effect on the Microenvironment of Biomolecular Condensates.离子对生物分子凝聚物微环境的影响。
J Am Chem Soc. 2024 May 22;146(20):14307-14317. doi: 10.1021/jacs.4c04036. Epub 2024 May 9.
4
5
Biological colloids: Unique properties of membraneless organelles in the cell.生物胶体:细胞中无膜细胞器的独特性质
Adv Colloid Interface Sci. 2022 Dec;310:102777. doi: 10.1016/j.cis.2022.102777. Epub 2022 Sep 19.
6
Function moves biomolecular condensates in phase space.功能在相空间中移动生物分子凝聚物。
Bioessays. 2022 May;44(5):e2200001. doi: 10.1002/bies.202200001. Epub 2022 Mar 3.
9
Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene.无膜细胞器界面的电势由石墨烯测量。
Nano Lett. 2023 Dec 13;23(23):10796-10801. doi: 10.1021/acs.nanolett.3c02915. Epub 2023 Oct 20.
10
Targeting of biomolecular condensates to the autophagy pathway.将生物分子凝聚物靶向自噬途径。
Trends Cell Biol. 2023 Jun;33(6):505-516. doi: 10.1016/j.tcb.2022.08.006. Epub 2022 Sep 20.

引用本文的文献

本文引用的文献

1
Interface of biomolecular condensates modulates redox reactions.生物分子凝聚物的界面调节氧化还原反应。
Chem. 2023 Jun 8;9(6):1594-1609. doi: 10.1016/j.chempr.2023.04.001. Epub 2023 Apr 28.
3
Capillary forces generated by biomolecular condensates.由生物分子凝聚物产生的毛细作用力。
Nature. 2022 Sep;609(7926):255-264. doi: 10.1038/s41586-022-05138-6. Epub 2022 Sep 7.
6
Unifying coarse-grained force fields for folded and disordered proteins.统一折叠和无规蛋白质的粗粒力场。
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.
7
Regulation of biomolecular condensates by interfacial protein clusters.界面蛋白簇对生物分子凝聚物的调控。
Science. 2021 Sep 10;373(6560):1218-1224. doi: 10.1126/science.abg7071. Epub 2021 Sep 9.
8
Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation.一致力场捕获同源物分辨的 HP1 液-液相分离。
J Chem Theory Comput. 2021 May 11;17(5):3134-3144. doi: 10.1021/acs.jctc.0c01220. Epub 2021 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验