Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
Nat Commun. 2023 Sep 8;14(1):5527. doi: 10.1038/s41467-023-41274-x.
Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via phase separation coupled to percolation. Intracellular condensates often encompass numerous distinct proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA-binding proteins, hnRNPA1 and FUS. Using simulations and experiments, we find that 1:1 mixtures of A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own due to complementary electrostatic interactions. Tie line analysis reveals that stoichiometric ratios of different components and their sequence-encoded interactions contribute jointly to the driving forces for condensate formation. Simulations also show that the spatial organization of PLCDs within condensates is governed by relative strengths of homotypic versus heterotypic interactions. We uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins.
类朊低复杂度结构域(PLCDs)参与了不同生物分子凝聚物的形成和调节,这些凝聚物通过与渗透相关的相分离形成。细胞内凝聚物通常包含许多具有 PLCDs 的不同蛋白质。在这里,我们结合模拟和实验来研究来自两种 RNA 结合蛋白 hnRNPA1 和 FUS 的 PLCDs 的混合物。使用模拟和实验,我们发现 A1-LCD 和 FUS-LCD 的 1:1 混合物比单独的任何一种 PLCD 更容易发生相分离,这是由于互补的静电相互作用。连接线分析表明,不同成分的化学计量比及其序列编码的相互作用共同促成了凝聚物形成的驱动力。模拟还表明,PLCDs 在凝聚物中的空间组织由同型与异型相互作用的相对强度决定。我们揭示了在由蛋白质混合物形成的凝聚物界面处,分子的相互作用强度和序列长度如何调节构象偏好的规则。