Yu Dingzhe, Yang Wenjing, Chen Shuicai, Zhou Cong-Ying, Guo Zhen
College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.
Chemistry. 2024 Aug 6;30(44):e202401371. doi: 10.1002/chem.202401371. Epub 2024 Jul 17.
Herein, we describe a visible light-induced C(sp)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.
在此,我们描述了一种可见光诱导的喹喔啉-2(1H)-酮和香豆素的C(sp)-H芳基化方法,该方法使用碘鎓叶立德,无需外部光催化剂。该方案展示了广泛的底物范围,能够通过简单温和的程序实现各种杂环的芳基化。此外,光化学反应展示了其在生物活性分子高效合成中的适用性。在CASPT2//CASSCF/PCM理论水平上的计算研究表明,喹喔啉-2(1H)-酮的激发态促进了电子从其π键转移到碘鎓叶立德中C-I键的反键轨道,最终导致芳基自由基的形成,该自由基随后参与C-H芳基化过程。此外,我们的计算表明,在单电子转移(SET)过程中,碘鎓叶立德中的C-I键断裂以及所得芳基自由基与阳离子喹喔啉物种之间新的C-C键形成以相关方式发生。这使得芳基化反应能够沿着节能路线高效进行。