Suppr超能文献

复杂途径驱动多能性Fmoc-亮氨酸自组装。

Complex Pathways Drive Pluripotent Fmoc-Leucine Self-Assemblies.

作者信息

Paul Subir, Gayen Kousik, Cantavella Pau Gil, Escuder Beatriu, Singh Nishant

机构信息

Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain.

出版信息

Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202406220. doi: 10.1002/anie.202406220. Epub 2024 Jul 16.

Abstract

Nature uses complex self-assembly pathways to access distinct functional non-equilibrium self-assemblies. This remarkable ability to steer same set of biomolecules into different self-assembly states is done by avoiding thermodynamic pit. In synthetic systems, on demand control over 'Pathway Complexity' to access self-assemblies different from equilibrium structures remains challenging. Here we show versatile non-equilibrium assemblies of the same monomer via alternate assembly pathways. The assemblies nucleate using non-classical or classical nucleation routes into distinct metastable (transient hydrogels), kinetic (stable hydrogels) and thermodynamic structures [(poly)-crystals and 2D sheets]. Initial chemical and thermal inputs force the monomers to follow different assembly pathways and form soft-materials with distinct molecular arrangements than at equilibrium. In many cases, equilibrium structures act as thermodynamic sink which consume monomers from metastable structures giving transiently formed materials. This dynamics can be tuned chemically or thermally to slow down the dissolution of transient hydrogel, or skip the intermediate hydrogel altogether to reach final equilibrium assemblies. If required this metastable state can be kinetically trapped to give strong hydrogel stable over days. This method to control different self-assembly states can find potential use in similar biomimetic systems to access new materials for various applications.

摘要

自然界利用复杂的自组装途径来形成不同的功能性非平衡自组装体。通过避开热力学陷阱,自然界能够将同一组生物分子引导至不同的自组装状态,这种非凡的能力令人瞩目。在合成系统中,按需控制“途径复杂性”以获得不同于平衡结构的自组装体仍然具有挑战性。在此,我们展示了通过交替组装途径实现同一单体的多种非平衡组装。这些组装体通过非经典或经典成核途径成核,形成不同的亚稳态(瞬态水凝胶)、动力学稳定态(稳定水凝胶)和热力学结构[(多)晶体和二维片层]。初始的化学和热输入迫使单体遵循不同的组装途径,形成与平衡态下分子排列不同的软材料。在许多情况下,平衡结构充当热力学汇,消耗亚稳态结构中的单体,从而使瞬态形成的材料消失。这种动力学过程可以通过化学或热方式进行调节,以减缓瞬态水凝胶的溶解,或者完全跳过中间水凝胶阶段直接达到最终的平衡组装体。如果需要,可以通过动力学手段捕获这种亚稳态,得到能在数天内保持稳定的强水凝胶。这种控制不同自组装状态的方法在类似的仿生系统中具有潜在应用价值,可用于开发各种应用的新材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验