Suppr超能文献

受蛋白质结构启发的药物发现

Protein Structure Inspired Drug Discovery.

作者信息

Qiao Fangfang, Binknowski T Andrew, Broughan Irene, Chen Weining, Natarajan Amarnath, Schiltz Gary E, Scheidt Karl A, Anderson Wayne F, Bergan Raymond

机构信息

Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA.

Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA.

出版信息

bioRxiv. 2024 May 20:2024.05.17.594634. doi: 10.1101/2024.05.17.594634.

Abstract

Drug discovery starts with known function, either of a compound or a protein, in-turn prompting investigations to probe 3D structure of the compound-protein interface. As protein structure determines function, we hypothesized that unique 3D structural motifs represent primary information denoting unique function that can drive discovery of novel agents. Using a physics-based protein structure analysis platform developed by us, designed to conduct computationally intensive analysis at supercomputing speeds, we probed a high-resolution protein x-ray crystallographic library developed by us. We selected 3D structural motifs whose function was not otherwise established, that offered environments supporting binding of drug-like chemicals and were present on proteins that were not established therapeutic targets. For each of eight potential binding pockets on six different proteins we accessed a 60 million compound library and used our analysis platform to evaluate binding. Using eight-day colony formation assays acquired compounds were screened for efficacy against human breast, prostate, colon and lung cancer cells and toxicity against human bone marrow stem cells. Compounds selectively inhibiting cancer growth segregated to two pockets on separate proteins. The compound, Dxr2-017, exhibited selective activity against human melanoma cells in the NCI-60 cell line screen, had an IC50 of 19 nM against human melanoma M14 cells in our eight-day assay, while over 2100-fold higher concentrations inhibited stem cells by less than 30%. We show that Dxr2-017 induces anoikis, a unique form of programmed cell death in need of targeted therapeutics. The predicted target protein for Dxr2-017 is expressed in bacteria, not in humans. This supports our strategy of focusing on unique 3D structural motifs. It is known that functionally important 3D structures are evolutionarily conserved. Here we demonstrate proof-of-concept that protein structure represents high value primary data to support discovery of novel therapeutics. This approach is widely applicable.

摘要

药物发现始于已知的化合物或蛋白质功能,进而促使人们对化合物 - 蛋白质界面的三维结构进行研究。由于蛋白质结构决定功能,我们推测独特的三维结构基序代表了表示独特功能的主要信息,而这种独特功能能够推动新型药物的发现。我们使用自行开发的基于物理学的蛋白质结构分析平台,该平台旨在以超级计算速度进行计算密集型分析,我们对自行开发的高分辨率蛋白质X射线晶体学文库进行了探测。我们选择了功能尚未确定的三维结构基序,这些基序提供了支持类药物化学物质结合的环境,并且存在于尚未确立为治疗靶点的蛋白质上。对于六种不同蛋白质上的八个潜在结合口袋,我们访问了一个包含六千万种化合物的文库,并使用我们的分析平台评估结合情况。利用为期八天的集落形成试验,对获得的化合物进行筛选,以检测其对人乳腺癌、前列腺癌、结肠癌和肺癌细胞的疗效以及对人骨髓干细胞的毒性。选择性抑制癌症生长的化合物聚集在不同蛋白质上的两个口袋中。化合物Dxr2 - 017在NCI - 60细胞系筛选中对人黑色素瘤细胞表现出选择性活性,在我们为期八天的试验中对人黑色素瘤M14细胞的IC50为19 nM,而超过2100倍高的浓度对干细胞的抑制作用小于30%。我们表明Dxr2 - 017诱导失巢凋亡,这是一种需要靶向治疗的独特形式的程序性细胞死亡。Dxr2 - 017的预测靶蛋白在细菌中表达,而不在人类中表达。这支持了我们专注于独特三维结构基序的策略。众所周知,功能重要的三维结构在进化上是保守的。在这里,我们证明了蛋白质结构代表高价值的原始数据以支持新型治疗药物发现的概念验证。这种方法具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9d/11142055/3b37a745bc54/nihpp-2024.05.17.594634v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验