Suppr超能文献

人工智能在虚拟筛选中的应用:模型与实验的对比。

Artificial intelligence in virtual screening: Models versus experiments.

机构信息

Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, S-10044, Sweden; Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.

Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.

出版信息

Drug Discov Today. 2022 Jul;27(7):1913-1923. doi: 10.1016/j.drudis.2022.05.013. Epub 2022 May 18.

Abstract

A typical drug discovery project involves identifying active compounds with significant binding potential for selected disease-specific targets. Experimental high-throughput screening (HTS) is a traditional approach to drug discovery, but is expensive and time-consuming when dealing with huge chemical libraries with billions of compounds. The search space can be narrowed down with the use of reliable computational screening approaches. In this review, we focus on various machine-learning (ML) and deep-learning (DL)-based scoring functions developed for solving classification and ranking problems in drug discovery. We highlight studies in which ML and DL models were successfully deployed to identify lead compounds for which the experimental validations are available from bioassay studies.

摘要

一个典型的药物发现项目涉及识别对选定疾病特异性靶标具有显著结合潜力的活性化合物。实验高通量筛选(HTS)是药物发现的传统方法,但在处理具有数十亿化合物的巨大化学库时,成本高且耗时。可以使用可靠的计算筛选方法来缩小搜索空间。在这篇综述中,我们专注于为解决药物发现中的分类和排序问题而开发的各种基于机器学习(ML)和深度学习(DL)的评分函数。我们强调了 ML 和 DL 模型成功用于识别先导化合物的研究,这些化合物的实验验证可从生物测定研究中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验