Varshavsky Julia R, Lam Juleen, Cooper Courtney, Allard Patrick, Fung Jennifer, Oke Ashwini, Kumar Ravinder, Robinson Joshua F, Woodruff Tracey J
Department of Health Sciences and Department of Civil and Environmental Engineering, Northeastern University, Boston, MA.
Department of Public Health, California State University, East Bay, Hayward, CA, USA.
bioRxiv. 2024 May 22:2024.05.21.595187. doi: 10.1101/2024.05.21.595187.
While high-throughput (HTP) assays have been proposed as platforms to rapidly assess reproductive toxicity, there is currently a lack of established assays that specifically address germline development/function and fertility. We assessed the applicability domains of yeast ( and nematode HTP assays in toxicity screening of 124 environmental chemicals, determining their agreement in identifying toxicants and their concordance with reproductive toxicity . We integrated data generated in the two models and compared results using a streamlined, semi-automated benchmark dose (BMD) modeling approach. We then extracted and modeled relevant mammalian data available for the matching chemicals included in the Toxicological Reference Database (ToxRefDB). We ranked potencies of common compounds using the BMD and evaluated correlation between the datasets using Pearson and Spearman correlation coefficients. We found moderate to good correlation across the three data sets, with r = 0.48 (95% CI: 0.28-1.00, p<0.001) and r = 0.40 (p=0.002) for the parametric and rank order correlations between the HTP BMDs; r = 0.95 (95% CI: 0.76-1.00, p=0.0005) and r = 0.89 (p=0.006) between the yeast assay and ToxRefDB BMDs; and r = 0.81 (95% CI: 0.28-1.00, p=0.014) and r = 0.75 (p=0.033) between the worm assay and ToxRefDB BMDs. Our findings underscore the potential of these HTP assays to identify environmental chemicals that exhibit reproductive toxicity. Integrating these HTP datasets into mammalian prediction models using machine learning methods could further enhance the predictive value of these assays in future rapid screening efforts.
虽然高通量(HTP)检测已被提议作为快速评估生殖毒性的平台,但目前缺乏专门针对生殖细胞发育/功能和生育能力的既定检测方法。我们评估了酵母(和线虫)HTP检测在124种环境化学品毒性筛查中的适用范围,确定了它们在识别有毒物质方面的一致性以及与生殖毒性的一致性。我们整合了两个模型中生成的数据,并使用简化的半自动基准剂量(BMD)建模方法比较了结果。然后,我们提取并对毒理学参考数据库(ToxRefDB)中包含的匹配化学品的相关哺乳动物数据进行建模。我们使用BMD对常见化合物的效力进行排名,并使用Pearson和Spearman相关系数评估数据集之间的相关性。我们发现三个数据集之间存在中度到良好的相关性,HTP BMDs之间的参数和秩次相关性的r值分别为0.48(95%CI:0.28 - 1.00,p<0.001)和0.40(p = 0.002);酵母检测与ToxRefDB BMDs之间的r值分别为0.95(95%CI:0.76 - 1.00,p = 0.0005)和0.89(p = 0.006);线虫检测与ToxRefDB BMDs之间的r值分别为0.81(95%CI:0.28 - 1.00,p = 0.014)和0.75(p = 0.033)。我们的研究结果强调了这些HTP检测在识别具有生殖毒性的环境化学品方面的潜力。使用机器学习方法将这些HTP数据集整合到哺乳动物预测模型中,可能会在未来的快速筛查工作中进一步提高这些检测的预测价值。