Wolfe Zachery, Liska David, Norris Adam
Department of Biological Sciences, Southern Methodist University, Dallas, TX 75205, United States.
Office of Information Technology, Southern Methodist University, Dallas, TX 75205, United States.
bioRxiv. 2024 May 20:2024.05.16.594572. doi: 10.1101/2024.05.16.594572.
Profiling gene expression in single neurons using single-cell RNA-Seq is a powerful method for understanding the molecular diversity of the nervous system. Profiling alternative splicing in single neurons using these methods is more challenging, however, due to low capture efficiency and sensitivity. As a result, we know much less about splicing patterns and regulation across neurons than we do about gene expression. Here we leverage unique attributes of the nervous system to investigate deep cell-specific transcriptomes complete with biological replicates generated by the CeNGEN consortium, enabling high-confidence assessment of splicing across neuron types even for lowly-expressed genes. Global splicing maps reveal several striking observations, including pan-neuronal genes that harbor cell-specific splice variants, abundant differential intron retention across neuron types, and a single neuron highly enriched for upstream alternative 3' splice sites. We develop an algorithm to identify unique cell-specific expression patterns and use it to discover both cell-specific isoforms and potential regulatory RNA binding proteins that establish these isoforms. Genetic interrogation of these RNA binding proteins identifies three distinct regulatory factors employed to establish unique splicing patterns in a single neuron. Finally, we develop a user-friendly platform for spatial transcriptomic visualization of these splicing patterns with single-neuron resolution.
使用单细胞RNA测序分析单个神经元中的基因表达是理解神经系统分子多样性的有力方法。然而,由于捕获效率和灵敏度较低,使用这些方法分析单个神经元中的可变剪接更具挑战性。因此,我们对神经元间剪接模式和调控的了解远少于对基因表达的了解。在这里,我们利用神经系统的独特属性,通过CeNGEN联盟生成的生物重复样本,研究深入的细胞特异性转录组,即使对于低表达基因,也能对跨神经元类型的剪接进行高可信度评估。全局剪接图谱揭示了几个惊人的发现,包括含有细胞特异性剪接变体的泛神经元基因、跨神经元类型丰富的差异内含子保留,以及一个高度富集上游可变3'剪接位点的单个神经元。我们开发了一种算法来识别独特的细胞特异性表达模式,并利用它来发现细胞特异性异构体以及建立这些异构体的潜在调控RNA结合蛋白。对这些RNA结合蛋白的基因研究确定了三种不同的调控因子,用于在单个神经元中建立独特的剪接模式。最后,我们开发了一个用户友好的平台,用于以单神经元分辨率对这些剪接模式进行空间转录组可视化。