Suppr超能文献

从机器到大脑:使用脑机生成对抗网络的面部表情识别

Machine to brain: facial expression recognition using brain machine generative adversarial networks.

作者信息

Liu Dongjun, Cui Jin, Pan Zeyu, Zhang Hangkui, Cao Jianting, Kong Wanzeng

机构信息

School of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.

Graduate School of Engineering, Saitama Institute of Technology, Saitama, 369-0293 Japan.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):863-875. doi: 10.1007/s11571-023-09946-y. Epub 2023 Feb 22.

Abstract

The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features. More specifically, we firstly obtain EEG signals triggered from facial emotion images, then we adopt BM-GAN to carry out the mutual generation of image visual features and EEG cognitive features. BM-GAN intends to use the cognitive knowledge learnt from EEG signals to instruct the model to perceive LIKE-EEG features. Thereby, BM-GAN has a superior performance for FER like the human brain. The proposed model consists of VisualNet, EEGNet, and BM-GAN. More specifically, VisualNet can obtain image visual features from facial emotion images and EEGNet can obtain EEG cognitive features from EEG signals. Subsequently, the BM-GAN completes the mutual generation of image visual features and EEG cognitive features. Finally, the predicted LIKE-EEG features of test images are used for FER. After learning, without the participation of the EEG signals, an average classification accuracy of 96.6 % is obtained on Chinese Facial Affective Picture System dataset using LIKE-EEG features for FER. Experiments demonstrate that the proposed method can produce an excellent performance for FER.

摘要

人类大脑能够利用其认知能力,通过少量样本有效地进行面部表情识别(FER)。然而,与人类大脑不同的是,即使是训练有素的深度神经网络也依赖数据且缺乏认知能力。为应对这一挑战,本文提出了一种新颖的框架——脑机生成对抗网络(BM-GAN),该框架利用大脑认知能力的概念来引导卷积神经网络生成类脑电图(EEG)特征。具体而言,我们首先获取由面部情感图像触发的EEG信号,然后采用BM-GAN进行图像视觉特征和EEG认知特征的相互生成。BM-GAN旨在利用从EEG信号中学到的认知知识来指导模型感知类EEG特征。因此,BM-GAN在FER方面具有像人类大脑一样的卓越性能。所提出的模型由视觉网络(VisualNet)、脑电图网络(EEGNet)和BM-GAN组成。具体来说,VisualNet可以从面部情感图像中获取图像视觉特征,EEGNet可以从EEG信号中获取EEG认知特征。随后,BM-GAN完成图像视觉特征和EEG认知特征的相互生成。最后,将测试图像的预测类EEG特征用于FER。经过学习,在不使用EEG信号参与的情况下,使用类EEG特征在中文面部表情图片系统数据集上进行FER时,平均分类准确率达到了96.6%。实验表明,所提出的方法在FER方面能够产生优异的性能。

相似文献

1
Machine to brain: facial expression recognition using brain machine generative adversarial networks.
Cogn Neurodyn. 2024 Jun;18(3):863-875. doi: 10.1007/s11571-023-09946-y. Epub 2023 Feb 22.
2
Brain-Machine Coupled Learning Method for Facial Emotion Recognition.
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10703-10717. doi: 10.1109/TPAMI.2023.3257846. Epub 2023 Aug 7.
4
A medical image classification method based on self-regularized adversarial learning.
Med Phys. 2024 Nov;51(11):8232-8246. doi: 10.1002/mp.17320. Epub 2024 Jul 30.
6
Adversarial denoising of EEG signals: a comparative analysis of standard GAN and WGAN-GP approaches.
Front Hum Neurosci. 2025 May 6;19:1583342. doi: 10.3389/fnhum.2025.1583342. eCollection 2025.
8
Improved BCI calibration in multimodal emotion recognition using heterogeneous adversarial transfer learning.
PeerJ Comput Sci. 2025 Jan 20;11:e2649. doi: 10.7717/peerj-cs.2649. eCollection 2025.
9
Auditory-GAN: deep learning framework for improved auditory spatial attention detection.
PeerJ Comput Sci. 2024 Oct 30;10:e2394. doi: 10.7717/peerj-cs.2394. eCollection 2024.
10
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
Front Comput Neurosci. 2021 Dec 9;15:723843. doi: 10.3389/fncom.2021.723843. eCollection 2021.

本文引用的文献

2
Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network.
Sensors (Basel). 2021 Apr 27;21(9):3046. doi: 10.3390/s21093046.
4
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
5
Using human brain activity to guide machine learning.
Sci Rep. 2018 Mar 29;8(1):5397. doi: 10.1038/s41598-018-23618-6.
6
Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.
Neural Comput. 2017 Sep;29(9):2352-2449. doi: 10.1162/NECO_a_00990. Epub 2017 Jun 9.
7
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Recognizing Action Units for Facial Expression Analysis.
IEEE Trans Pattern Anal Mach Intell. 2001 Feb;23(2):97-115. doi: 10.1109/34.908962.
9
Brain-machine interfaces: past, present and future.
Trends Neurosci. 2006 Sep;29(9):536-46. doi: 10.1016/j.tins.2006.07.004. Epub 2006 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验