Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Aachen, Germany.
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Nat Commun. 2020 Aug 25;11(1):4238. doi: 10.1038/s41467-020-18037-z.
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.
最近,深度学习在各个领域取得了前所未有的成功,尤其是在图像、文本和语音方面。然而,只有当数据具有非线性关系并且可以在可用的样本大小下利用时,深度学习才是有益的。我们系统地研究了深度、核和线性模型在英国生物银行脑图像上的性能,这些模型的样本大小与已建立的机器学习参考有关。在 MNIST 和 Zalando Fashion 上,从线性模型到浅层非线性模型的预测精度不断提高,而进一步提高到深层非线性模型时,预测精度会进一步提高。相比之下,在使用结构或功能脑扫描时,简单的线性模型在年龄/性别预测方面的性能与越来越大的样本量中更复杂、参数化程度更高的模型相当。总的来说,线性模型随着样本量接近~10000 个主体而不断提高。然而,从典型的脑扫描中预测常见表型的非线性仍然很大程度上无法被所检查的核和深度学习方法所利用。