Suppr超能文献

用于生物医学信号分析的多尺度排列莱姆佩尔-齐夫复杂度度量:解释及其在局灶性脑电图信号中的应用

Multiscale Permutation Lempel-Ziv Complexity Measure for Biomedical Signal Analysis: Interpretation and Application to Focal EEG Signals.

作者信息

Borowska Marta

机构信息

Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska St., 15-351 Białystok, Poland.

出版信息

Entropy (Basel). 2021 Jun 29;23(7):832. doi: 10.3390/e23070832.

Abstract

This paper analyses the complexity of electroencephalogram (EEG) signals in different temporal scales for the analysis and classification of focal and non-focal EEG signals. Futures from an original multiscale permutation Lempel-Ziv complexity measure (MPLZC) were obtained. MPLZC measure combines a multiscale structure, ordinal analysis, and permutation Lempel-Ziv complexity for quantifying the dynamic changes of an electroencephalogram (EEG). We also show the dependency of MPLZC on several straight-forward signal processing concepts, which appear in biomedical EEG activity via a set of synthetic signals. The main material of the study consists of EEG signals, which were obtained from the Bern-Barcelona EEG database. The signals were divided into two groups: focal EEG signals ( =100) and non-focal EEG signals ( = 100); statistical analysis was performed by means of non-parametric Mann-Whitney test. The mean value of MPLZC results in the non-focal group are significantly higher than those in the focal group for scales above 1 ( <0.05). The result indicates that the non-focal EEG signals are more complex. MPLZC feature sets are used for the least squares support vector machine (LS-SVM) classifier to classify into the focal and non-focal EEG signals. Our experimental results confirmed the usefulness of the MPLZC method for distinguishing focal and non-focal EEG signals with a classification accuracy of 86%.

摘要

本文分析了不同时间尺度下脑电图(EEG)信号的复杂性,用于局灶性和非局灶性EEG信号的分析和分类。获得了基于原始多尺度排列莱姆尔 - 齐夫复杂度度量(MPLZC)的特征。MPLZC度量结合了多尺度结构、序数分析和排列莱姆尔 - 齐夫复杂度,以量化脑电图(EEG)的动态变化。我们还通过一组合成信号展示了MPLZC对一些直接的信号处理概念的依赖性,这些概念出现在生物医学EEG活动中。该研究的主要材料由从伯尔尼 - 巴塞罗那EEG数据库获得的EEG信号组成。这些信号被分为两组:局灶性EEG信号( = 100)和非局灶性EEG信号( = 100);通过非参数曼 - 惠特尼检验进行统计分析。对于尺度大于1的情况,非局灶性组中MPLZC结果的平均值显著高于局灶性组( < 0.05)。结果表明非局灶性EEG信号更复杂。MPLZC特征集用于最小二乘支持向量机(LS - SVM)分类器,以将局灶性和非局灶性EEG信号分类。我们的实验结果证实了MPLZC方法在区分局灶性和非局灶性EEG信号方面的有效性,分类准确率为86%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd29/8307896/a0d521cf137b/entropy-23-00832-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验