Suppr超能文献

DA-TransUNet:将空间和通道双重注意力与Transformer U-Net相结合用于医学图像分割

DA-TransUNet: integrating spatial and channel dual attention with transformer U-net for medical image segmentation.

作者信息

Sun Guanqun, Pan Yizhi, Kong Weikun, Xu Zichang, Ma Jianhua, Racharak Teeradaj, Nguyen Le-Minh, Xin Junyi

机构信息

School of Information Engineering, Hangzhou Medical College, Hangzhou, China.

School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Japan.

出版信息

Front Bioeng Biotechnol. 2024 May 16;12:1398237. doi: 10.3389/fbioe.2024.1398237. eCollection 2024.

Abstract

Accurate medical image segmentation is critical for disease quantification and treatment evaluation. While traditional U-Net architectures and their transformer-integrated variants excel in automated segmentation tasks. Existing models also struggle with parameter efficiency and computational complexity, often due to the extensive use of Transformers. However, they lack the ability to harness the image's intrinsic position and channel features. Research employing Dual Attention mechanisms of position and channel have not been specifically optimized for the high-detail demands of medical images. To address these issues, this study proposes a novel deep medical image segmentation framework, called DA-TransUNet, aiming to integrate the Transformer and dual attention block (DA-Block) into the traditional U-shaped architecture. Also, DA-TransUNet tailored for the high-detail requirements of medical images, optimizes the intermittent channels of Dual Attention (DA) and employs DA in each skip-connection to effectively filter out irrelevant information. This integration significantly enhances the model's capability to extract features, thereby improving the performance of medical image segmentation. DA-TransUNet is validated in medical image segmentation tasks, consistently outperforming state-of-the-art techniques across 5 datasets. In summary, DA-TransUNet has made significant strides in medical image segmentation, offering new insights into existing techniques. It strengthens model performance from the perspective of image features, thereby advancing the development of high-precision automated medical image diagnosis. The codes and parameters of our model will be publicly available at https://github.com/SUN-1024/DA-TransUnet.

摘要

准确的医学图像分割对于疾病量化和治疗评估至关重要。虽然传统的U-Net架构及其集成了Transformer的变体在自动分割任务中表现出色,但现有模型在参数效率和计算复杂度方面仍存在困难,这通常是由于Transformer的广泛使用。然而,它们缺乏利用图像内在位置和通道特征的能力。采用位置和通道双注意力机制的研究尚未针对医学图像的高细节要求进行专门优化。为了解决这些问题,本研究提出了一种新颖的深度医学图像分割框架,称为DA-TransUNet,旨在将Transformer和双注意力模块(DA-Block)集成到传统的U形架构中。此外,DA-TransUNet针对医学图像的高细节要求进行了定制,优化了双注意力(DA)的中间通道,并在每个跳跃连接中使用DA以有效滤除无关信息。这种集成显著增强了模型提取特征的能力,从而提高了医学图像分割的性能。DA-TransUNet在医学图像分割任务中得到了验证,在5个数据集上始终优于现有技术。总之,DA-TransUNet在医学图像分割方面取得了重大进展,为现有技术提供了新的见解。它从图像特征的角度增强了模型性能,从而推动了高精度自动医学图像诊断的发展。我们模型的代码和参数将在https://github.com/SUN-1024/DA-TransUnet上公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd9f/11141164/81473627e7b7/fbioe-12-1398237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验