Batista Stephanie, Couceiro Miguel, Filipe Ricardo, Rachinhas Paulo, Isidoro Jorge, Domingues Inês
Polytechnic University of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal.
Institute of Applied Research (i2A), 3045-093 Coimbra, Portugal.
Bioengineering (Basel). 2025 May 15;12(5):530. doi: 10.3390/bioengineering12050530.
Machine Learning models, more specifically Artificial Neural Networks, are transforming medical imaging by enabling precise liver segmentation, a crucial task for diagnosing and treating liver diseases. However, these models often face challenges in adapting to diverse clinical data sources as differences in dataset volume, resolution, and origin impact generalization and performance. This study introduces a , a data-centric approach to enhance the adaptability of Artificial Neural Networks by progressively exposing them to varied clinical data. As the target of this study is not to propose a new image segmentation model, the existing medical imaging segmentation models-including U-Net, ResUNet++, Fully Convolutional Network, and a modified algorithm based on the Conditional Bernoulli Diffusion Model-are used. The study evaluates these four models using a curated private dataset of computed tomography scans from Coimbra University Hospital, supplemented by two public datasets, 3D-IRCADb01 and CHAOS. The method systematically increases the volume and diversity of training data, simulating real-world conditions where models must handle varied imaging contexts. Pre-processing and post-processing stages, incremental training, and performance evaluations reveal that structured exposure to diverse datasets improves segmentation performance, with ResUNet++ achieving the highest accuracy (0.9972) and Dice Similarity Coefficient (0.9449), and the best Average Symmetric Surface Distance (0.0053 mm), demonstrating the importance of dataset diversity and volume for segmentation models' robustness and generalization. thus offers a scalable strategy for building resilient segmentation models, ultimately benefiting clinical workflows, patient care, and healthcare resource management by addressing the variability inherent in clinical imaging data.
机器学习模型,更具体地说是人工神经网络,正在通过实现精确的肝脏分割来改变医学成像,这是诊断和治疗肝脏疾病的一项关键任务。然而,这些模型在适应不同的临床数据源时往往面临挑战,因为数据集的体积、分辨率和来源的差异会影响泛化能力和性能。本研究引入了一种以数据为中心的方法,通过逐步让人工神经网络接触各种临床数据来提高其适应性。由于本研究的目标不是提出一种新的图像分割模型,因此使用了现有的医学成像分割模型,包括U-Net、ResUNet++、全卷积网络以及基于条件伯努利扩散模型的改进算法。该研究使用来自科英布拉大学医院的精心策划的计算机断层扫描私人数据集,并辅以两个公共数据集3D-IRCADb01和CHAOS,对这四种模型进行评估。该方法系统地增加了训练数据的体积和多样性,模拟了模型必须处理各种成像情况的现实世界条件。预处理和后处理阶段、增量训练以及性能评估表明,有组织地接触不同的数据集可以提高分割性能,ResUNet++达到了最高的准确率(0.9972)和骰子相似系数(0.9449),以及最佳的平均对称表面距离(0.0053毫米),证明了数据集多样性和体积对于分割模型的稳健性和泛化能力的重要性。因此,该方法提供了一种构建弹性分割模型的可扩展策略,最终通过解决临床成像数据中固有的变异性,使临床工作流程、患者护理和医疗资源管理受益。