Liu Yunxin, Yuan Di, Xu Zhenghua, Zhan Yuefu, Zhang Hongwei, Lu Jun, Lukasiewicz Thomas
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China.
Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, China.
Sci Rep. 2025 Mar 10;15(1):8213. doi: 10.1038/s41598-025-92117-2.
Existing deep learning methods have achieved significant success in medical image segmentation. However, this success largely relies on stacking advanced modules and architectures, which has created a path dependency. This path dependency is unsustainable, as it leads to increasingly larger model parameters and higher deployment costs. To break this path dependency, we introduce deep reinforcement learning to enhance segmentation performance. However, current deep reinforcement learning methods face challenges such as high training cost, independent iterative processes, and high uncertainty of segmentation masks. Consequently, we propose a Pixel-level Deep Reinforcement Learning model with pixel-by-pixel Mask Generation (PixelDRL-MG) for more accurate and robust medical image segmentation. PixelDRL-MG adopts a dynamic iterative update policy, directly segmenting the regions of interest without requiring user interaction or coarse segmentation masks. We propose a Pixel-level Asynchronous Advantage Actor-Critic (PA3C) strategy to treat each pixel as an agent whose state (foreground or background) is iteratively updated through direct actions. Our experiments on two commonly used medical image segmentation datasets demonstrate that PixelDRL-MG achieves more superior segmentation performances than the state-of-the-art segmentation baselines (especially in boundaries) using significantly fewer model parameters. We also conducted detailed ablation studies to enhance understanding and facilitate practical application. Additionally, PixelDRL-MG performs well in low-resource settings (i.e., 50-shot or 100-shot), making it an ideal choice for real-world scenarios.
现有的深度学习方法在医学图像分割方面取得了显著成功。然而,这种成功很大程度上依赖于堆叠先进的模块和架构,这产生了一种路径依赖。这种路径依赖是不可持续的,因为它导致模型参数越来越大,部署成本越来越高。为了打破这种路径依赖,我们引入深度强化学习来提高分割性能。然而,当前的深度强化学习方法面临着诸如训练成本高、独立迭代过程以及分割掩码的高度不确定性等挑战。因此,我们提出了一种具有逐像素掩码生成的像素级深度强化学习模型(PixelDRL-MG),用于更准确和稳健的医学图像分割。PixelDRL-MG采用动态迭代更新策略,无需用户交互或粗分割掩码即可直接分割感兴趣区域。我们提出了一种像素级异步优势动作评论家(PA3C)策略,将每个像素视为一个智能体,其状态(前景或背景)通过直接动作进行迭代更新。我们在两个常用的医学图像分割数据集上的实验表明,PixelDRL-MG使用明显更少的模型参数,比最先进的分割基线实现了更优越的分割性能(尤其是在边界方面)。我们还进行了详细的消融研究,以增强理解并促进实际应用。此外,PixelDRL-MG在低资源设置(即50次或100次拍摄)下表现良好,使其成为现实场景的理想选择。