Suppr超能文献

SG-Transunet:一种用于结直肠癌 KRAS 基因突变状态识别的分割引导 Transformer U-Net 模型。

SG-Transunet: A segmentation-guided Transformer U-Net model for KRAS gene mutation status identification in colorectal cancer.

机构信息

Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

School of Engineering Medicine, Beihang University, Beijing, 100191, China.

出版信息

Comput Biol Med. 2024 May;173:108293. doi: 10.1016/j.compbiomed.2024.108293. Epub 2024 Mar 20.

Abstract

Accurately identifying the Kirsten rat sarcoma virus (KRAS) gene mutation status in colorectal cancer (CRC) patients can assist doctors in deciding whether to use specific targeted drugs for treatment. Although deep learning methods are popular, they are often affected by redundant features from non-lesion areas. Moreover, existing methods commonly extract spatial features from imaging data, which neglect important frequency domain features and may degrade the performance of KRAS gene mutation status identification. To address this deficiency, we propose a segmentation-guided Transformer U-Net (SG-Transunet) model for KRAS gene mutation status identification in CRC. Integrating the strength of convolutional neural networks (CNNs) and Transformers, SG-Transunet offers a unique approach for both lesion segmentation and KRAS mutation status identification. Specifically, for precise lesion localization, we employ an encoder-decoder to obtain segmentation results and guide the KRAS gene mutation status identification task. Subsequently, a frequency domain supplement block is designed to capture frequency domain features, integrating it with high-level spatial features extracted in the encoding path to derive advanced spatial-frequency domain features. Furthermore, we introduce a pre-trained Xception block to mitigate the risk of overfitting associated with small-scale datasets. Following this, an aggregate attention module is devised to consolidate spatial-frequency domain features with global information extracted by the Transformer at shallow and deep levels, thereby enhancing feature discriminability. Finally, we propose a mutual-constrained loss function that simultaneously constrains the segmentation mask acquisition and gene status identification process. Experimental results demonstrate the superior performance of SG-Transunet over state-of-the-art methods in discriminating KRAS gene mutation status.

摘要

准确识别结直肠癌细胞(CRC)中的 Kirsten 鼠肉瘤病毒(KRAS)基因突变状态可以帮助医生决定是否使用特定的靶向药物进行治疗。虽然深度学习方法很流行,但它们经常受到非病变区域的冗余特征的影响。此外,现有的方法通常从成像数据中提取空间特征,这忽略了重要的频域特征,并且可能降低 KRAS 基因突变状态识别的性能。为了解决这个不足,我们提出了一种用于 CRC 中 KRAS 基因突变状态识别的分割引导 Transformer U-Net(SG-Transunet)模型。SG-Transunet 结合了卷积神经网络(CNNs)和 Transformer 的优势,为病变分割和 KRAS 突变状态识别提供了一种独特的方法。具体来说,为了精确的病变定位,我们采用了编码器-解码器来获得分割结果,并指导 KRAS 基因突变状态识别任务。随后,设计了一个频域补充块来捕获频域特征,将其与编码路径中提取的高级空间特征相结合,得到高级的空间-频域特征。此外,我们引入了一个预训练的 Xception 块来减轻与小数据集相关的过拟合风险。之后,设计了一个聚合注意力模块,将空间-频域特征与 Transformer 在浅层和深层提取的全局信息进行整合,从而提高特征的可辨别性。最后,我们提出了一种相互约束的损失函数,该函数同时约束分割掩模获取和基因状态识别过程。实验结果表明,SG-Transunet 在区分 KRAS 基因突变状态方面的性能优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验