Mina Amir I, Espino Jessi U, Bradley Allison M, Thirumala Parthasarathy D, Batmanghelich Kayhan, Visweswaran Shyam
Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA.
Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:613-622. eCollection 2024.
Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.
在手术期间通过脑电图(EEG)监测大脑神经元活动可以检测到缺血,这是中风的先兆。然而,目前基于神经生理学家的监测容易出错。在本研究中,我们评估了机器学习(ML)用于高效准确地检测缺血的情况。我们在一个包含802例有术中缺血标签患者的数据集上训练了监督式ML模型,并在一个由五名神经生理学家提供精确标签的30例患者的独立验证数据集上对其进行评估。我们的结果显示神经生理学家之间存在中度到高度的一致性,科恩kappa值在0.59至0.74之间。神经生理学家的表现为敏感性在58 - 93%之间,特异性在83 - 96%之间,而ML模型的表现范围与之相当,分别为63 - 89%和85 - 96%。随机森林(RF)、LightGBM(LGBM)和XGBoost RF的受试者操作特征曲线下面积(AUROC)值为0.92 - 0.93,精确召回率曲线下面积(AUPRC)值为0.79 - 0.83。机器学习有潜力改善术中监测,提高患者安全性并降低成本。