Suppr超能文献

使用机器学习在颈动脉内膜切除术期间从脑电图检测脑缺血

Detecting Cerebral Ischemia From Electroencephalography During Carotid Endarterectomy Using Machine Learning.

作者信息

Mina Amir I, Espino Jessi U, Bradley Allison M, Thirumala Parthasarathy D, Batmanghelich Kayhan, Visweswaran Shyam

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA.

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:613-622. eCollection 2024.

Abstract

Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.

摘要

在手术期间通过脑电图(EEG)监测大脑神经元活动可以检测到缺血,这是中风的先兆。然而,目前基于神经生理学家的监测容易出错。在本研究中,我们评估了机器学习(ML)用于高效准确地检测缺血的情况。我们在一个包含802例有术中缺血标签患者的数据集上训练了监督式ML模型,并在一个由五名神经生理学家提供精确标签的30例患者的独立验证数据集上对其进行评估。我们的结果显示神经生理学家之间存在中度到高度的一致性,科恩kappa值在0.59至0.74之间。神经生理学家的表现为敏感性在58 - 93%之间,特异性在83 - 96%之间,而ML模型的表现范围与之相当,分别为63 - 89%和85 - 96%。随机森林(RF)、LightGBM(LGBM)和XGBoost RF的受试者操作特征曲线下面积(AUROC)值为0.92 - 0.93,精确召回率曲线下面积(AUPRC)值为0.79 - 0.83。机器学习有潜力改善术中监测,提高患者安全性并降低成本。

相似文献

1
Detecting Cerebral Ischemia From Electroencephalography During Carotid Endarterectomy Using Machine Learning.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:613-622. eCollection 2024.
2
Time-Series Aware Metrics for the Evaluation of Intraoperative Electroencephalography-Based Ischemia Detection.
Stud Health Technol Inform. 2024 Jan 25;310:274-278. doi: 10.3233/SHTI230970.
3
Predicting Choroidal Nevus Transformation to Melanoma Using Machine Learning.
Ophthalmol Sci. 2024 Jul 20;5(1):100584. doi: 10.1016/j.xops.2024.100584. eCollection 2025 Jan-Feb.
4
Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.
Int J Med Inform. 2021 May;149:104429. doi: 10.1016/j.ijmedinf.2021.104429. Epub 2021 Feb 22.
5
Prediction of Lumbar Drainage-Related Meningitis Based on Supervised Machine Learning Algorithms.
Front Public Health. 2022 Jun 28;10:910479. doi: 10.3389/fpubh.2022.910479. eCollection 2022.
7
Using machine learning to predict outcomes following carotid endarterectomy.
J Vasc Surg. 2023 Oct;78(4):973-987.e6. doi: 10.1016/j.jvs.2023.05.024. Epub 2023 May 20.
8
Stroke mortality prediction based on ensemble learning and the combination of structured and textual data.
Comput Biol Med. 2023 Mar;155:106176. doi: 10.1016/j.compbiomed.2022.106176. Epub 2022 Oct 28.
9
Predicting cerebral edema in patients with spontaneous intracerebral hemorrhage using machine learning.
Front Neurol. 2024 Oct 3;15:1419608. doi: 10.3389/fneur.2024.1419608. eCollection 2024.

本文引用的文献

1
Time-Series Aware Metrics for the Evaluation of Intraoperative Electroencephalography-Based Ischemia Detection.
Stud Health Technol Inform. 2024 Jan 25;310:274-278. doi: 10.3233/SHTI230970.
2
Electroencephalography Might Improve Diagnosis of Acute Stroke and Large Vessel Occlusion.
Stroke. 2020 Nov;51(11):3361-3365. doi: 10.1161/STROKEAHA.120.030150. Epub 2020 Sep 18.
3
Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset.
J Clin Neurophysiol. 2021 Sep 1;38(5):439-447. doi: 10.1097/WNP.0000000000000709.
4
Quantitative EEG Changes Correlate With Post-Clamp Ischemia During Carotid Endarterectomy.
J Clin Neurophysiol. 2021 May 1;38(3):213-220. doi: 10.1097/WNP.0000000000000686.
5
The Incidence of Perioperative Stroke: Estimate Using State and National Databases and Systematic Review.
J Stroke. 2019 Sep;21(3):290-301. doi: 10.5853/jos.2019.00304. Epub 2019 Sep 30.
6
Perioperative Major Adverse Cardiovascular and Cerebrovascular Events Associated With Noncardiac Surgery.
JAMA Cardiol. 2017 Feb 1;2(2):181-187. doi: 10.1001/jamacardio.2016.4792.
8
The precision--recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases.
J Clin Epidemiol. 2015 Aug;68(8):855-9. doi: 10.1016/j.jclinepi.2015.02.010. Epub 2015 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验