Suppr超能文献

PFERM:一种具有先验知识的公平经验风险最小化方法。

PFERM: A Fair Empirical Risk Minimization Approach with Prior Knowledge.

作者信息

Hou Bojian, Mondragón Andrés, Tarzanagh Davoud Ataee, Zhou Zhuoping, Saykin Andrew J, Moore Jason H, Ritchie Marylyn D, Long Qi, Shen Li

机构信息

University of Pennsylvania, Philadelphia, PA.

Indiana University, Indianapolis, IN.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:211-220. eCollection 2024.

Abstract

Fairness is crucial in machine learning to prevent bias based on sensitive attributes in classifier predictions. However, the pursuit of strict fairness often sacrifices accuracy, particularly when significant prevalence disparities exist among groups, making classifiers less practical. For example, Alzheimer's disease (AD) is more prevalent in women than men, making equal treatment inequitable for females. Accounting for prevalence ratios among groups is essential for fair decision-making. In this paper, we introduce prior knowledge for fairness, which incorporates prevalence ratio information into the fairness constraint within the Empirical Risk Minimization (ERM) framework. We develop the Prior-knowledge-guided Fair ERM (PFERM) framework, aiming to minimize expected risk within a specified function class while adhering to a prior-knowledge-guided fairness constraint. This approach strikes a flexible balance between accuracy and fairness. Empirical results confirm its effectiveness in preserving fairness without compromising accuracy.

摘要

公平性在机器学习中至关重要,可防止分类器预测中基于敏感属性的偏差。然而,追求严格的公平性往往会牺牲准确性,特别是当不同群体之间存在显著的患病率差异时,这使得分类器的实用性降低。例如,阿尔茨海默病(AD)在女性中比男性更普遍,这使得对女性的平等对待变得不公平。考虑群体之间的患病率比率对于公平决策至关重要。在本文中,我们引入了公平性的先验知识,将患病率比率信息纳入经验风险最小化(ERM)框架内的公平性约束中。我们开发了先验知识引导的公平ERM(PFERM)框架,旨在在特定函数类中最小化预期风险,同时遵循先验知识引导的公平性约束。这种方法在准确性和公平性之间实现了灵活的平衡。实证结果证实了其在不影响准确性的情况下保持公平性的有效性。

相似文献

4
Learning Fair Representations via Distance Correlation Minimization.通过最小化距离相关性学习公平表示。
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2139-2152. doi: 10.1109/TNNLS.2022.3187165. Epub 2024 Feb 5.
7
SLIDE: A surrogate fairness constraint to ensure fairness consistency.幻灯片:确保公平一致性的替代公平约束。
Neural Netw. 2022 Oct;154:441-454. doi: 10.1016/j.neunet.2022.07.027. Epub 2022 Jul 30.
8

本文引用的文献

3
Sex differences in Alzheimer's disease.阿尔茨海默病的性别差异。
Curr Opin Psychiatry. 2018 Mar;31(2):133-139. doi: 10.1097/YCO.0000000000000401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验